2023 Impact factor 2.6
Hadrons and Nuclei
Eur. Phys. J. A 1, 77-83

Critical behaviour in Au fragmentation at 10.7A GeV

M.I. Adamovich14 - M.M. Aggarwal4 - Y.A. Alexandrov14 - R. Amirikas18 - N.P. Andreeva1 - F.A. Avetyan22 - S.K. Badyal8 - A.M. Bakich18 - E.S. Basova19 - K.B. Bhalla7 - A. Bhasin8 - V.S. Bhatia4 - V.G. Bogdanov15 - V. Bradnova6 - V.I. Bubnov1 - X. Cai21 - I.Y. Chasnikov1 - G.M. Chen2 - L.P. Chernova20 - M.M. Chernyavski14 - S. Dhamija4 - A.S. Gaitinov1 - E.R. Ganssauge13 - S. Garpman12 - S.G. Gerassimov14 - J. Grote16 - K.G. Gulamov20 - S.K. Gupta7 - V.K. Gupta8 - M. Haiduc3 - U. Henjes13 - B. Jakobsson12 - L. Just10 - E.K. Kanygina1 - M. Karabova9 - L. Karlsson12 - S.P. Kharlamov14 - A.D. Kovalenko6 - S.A. Krasnov6 - V. Kumar7 - V.G. Larionova14 - Y.X. Li5 - L.S. Liu21 - Z.G. Liu5 - S. Lokanathan7 - J.J. Lord16 - N.S. Lukicheva20 - Y. Lu2 - S.B. Luo11 - L.K. Mangotra8 - I. Manhas8 - N.A. Marutyan22 - A.K. Musaeva1 - S.Z. Nasyrov19 - V.S. Navotny20 - J. Nystrand12 - G.I. Orlova14 - I. Otterlund12 - L.S. Peak18 - N.G. Peresadko14 - V.A. Plyushchev15 - W.Y. Qian21 - Y.M. Qin11 - R. Raniwala7 - N.K. Rao8 - J-T. Rhee17 - M. Roeper13 - V.V. Rusakova6 - N. Saidkhanov20 - N.A. Salmanova14 - L.G. Sarkisova22 - V.R. Sarkisyan22 - A.M. Seitimbetov1 - R. Sethi4 - C.I. Shakhova1 - B. Singh7 - D. Skelding16 - K. Söderström12 - E. Stenlund12 - L.N. Svechnikova20 - N.A. Tawfik13 - M. Tothova9 - M.I. Tretyakova14 - T.P. Trofimova19 - U.I. Tuleeva19 - S. Vokal9 - J. Vrlakova9 - H.Q. Wang12,21 - S.H. Wang2 - X.R. Wang21 - Z.Q. Weng5 - R.J. Wilkes16 - C.B. Yang21 - D.H. Zhang11 - P.Y. Zheng2 - S.I. Zhokhova20 - D.C. Zhou21 - EMU01-Collaboration

1 High Energy Physics Institute, Almaty, Kazakstan
2 Institute of High Energy Physics, Academia Sinica, Beijing, China
3 Institute for Gravitation and Space Research, Bucharest, Romania
4 Department of Physics, Panjab University, Chandigarh, India
5 Department of Physics, Hunan Education Institute, Changsha, Hunan, China
6 Laboratory of High Energies, Joint Institute for Nuclear Research (JINR), Dubna, Russia
7 Department of Physics, University of Rajasthan, Jaipur, India
8 Department of Physics, University of Jammu, Jammu, India
9 Department of Nuclear Physics and Biophysics, Safarik University, Kosice, Slovakia
10 Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
11 Department of Physics, Shanxi Normal University, Linfen, Shanxi, China
12 Department of Physics, University of Lund, Lund, Sweden
13 F.B. Physik, Philipps University, Marburg, Germany
14 Lab. of Cosmic Physics, P.N. Lebedev Institute of Physics, Moscow, Russia
15 V.G. Khlopin Radium Institute, St. Petersburg, Russia - 16 Department of Physics, University of Washington, Seattle, Washington, USA
17 Department of Physics, Kon-Kuk University, Seoul, Korea
18 School of Physics, University of Sydney, Sydney, Australia
19 Lab. of Relativistic Nuclear Physics, Institute of Nuclear Physics, Tashkent, Uzbekistan
20 Lab. of High Energies, Physical-Technical Institute, Tashkent, Uzbekistan
21 Institute of Particle Physics, Hua-Zhong Normal University, Wuhan, Hubei, China
22 Yerevan Physics Institute, Yerevan, Armenia

Received: 23 September 1997

Abstract
The complete charge distribution of products from Au nuclei fragmenting in nuclear emulsion at 10.7A GeV has been measured. Multiplicities of produced particles and particles associated with the target source are used to select peripheral and central events. A statistical analysis, based on event-by-event charge distributions, show that a population of subcritical, critical and supercritical events, i.e. a phase transition like behaviour, is observed among peripheral collisions.

PACS
25.75.-q Relativistic heavy-ion collisions


Copyright Springer-Verlag