2022 Impact factor 2.7
Hadrons and Nuclei

EPJ H Highlight - Is the end of the “particle era” of physics upon us?

alt
The completed standard model of particle physics. What shape will physics beyond this model take? Credit: Daniel Dominguez/CERN

New research looks at the potential for new discoveries in particle physics

The discovery of the Higgs Boson in 2012 represented a major turning point for particle physics marking the completion of what is known as the standard model of particle physics. Yet, the standard model can’t answer every question in physics, thus, since this discovery at the Large Hadron Collider (LHC) physicists have searched for physics beyond the standard model and to determine what shape future physics will take.

A new paper in EPJ H: Historical Perspectives on Contemporary Physics by Robert Harlander and Jean-Philippe Martinez of the Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, Germany, and Gregor Schiemann from the Faculty of Humanities and Cultural Studies, Bergische Universität Wuppertal, Germany, considers the idea that particle physics may be on the verge of a new era of discovery and understanding in particle physics. The paper also considers the implications of the many possible scenarios for the future of high-energy physics.

Read more...

EPJ H Highlight - Quarks and gluons: The JADE experiment at DESY

alt
Illustration of an electron-positron annihilation event recorded with the JADE detector. The emergence of a separate, third “jet” of particle tracks from the central annihilation point was the first indicator for the existence of gluons. Credit: DESY.

A new paper in EPJ H describes the JADE experiment at DESY in Hamburg, in which high-energy electron-positron collisions led to the discovery of the particle that holds quarks together to form protons and neutrons: the gluon.

The DESY research centre in Hamburg has been at the centre of German physical science research since the 1960s, leading to important discoveries about the fundamental structure of matter. One experiment at DESY, known as JADE, recorded data on electron-positron collisions between 1979 and 1986. Siggi Bethke from the Max Planck Institute of Physics in Munich and Albrecht Wagner from DESY have now reviewed the history of JADE in the journal EPJ H: Historical Perspectives on Contemporary Physics.

Read more...

EPJ H Highlight - Mid-twentieth-century physics in the home of Galileo

alt
Credit: Department of Physics and Astronomy, Scientific and Technological Hub, University of Florence.

Breakthroughs made at the Institute of Physics near Florence before 1950 include Fermi statistics and the first electronic coincidence circuits

Florence was a flourishing centre for fundamental physics research throughout most of the twentieth century. Roberto Casalbuoni, Daniele Dominici and Massimo Mazzoni – all physicists currently working there – have reviewed the history of the city’s Institute of Physics for the journal EPJ H: Historical Perspectives on Contemporary Physics, concentrating on the important decades of the 1920s to 1960s.

Read more...

EPJ H Editor Jürgen Renn receives 2023 Abraham Pais Prize for History of Physics

alt
Prof. Jürgen Renn

The prestigious Abraham Pais Prize for History of Physics, awarded each year by the American Physical Society, recognizes outstanding scholarly achievements in the history of physics. Professor Jürgen Renn, Editor of EPJH: Historical Perspectives on Contemporary Physics and Archive for History of Exact Sciences receives the 2023 Abraham Pais Prize for History of Physics "for contributions to the historiography of modern and early modern science, in particular, studies of Albert Einstein; and for contributing scholarship and taking public stances that directly raise the social relevance of science historiography."

Read more...

EPJ H Highlight - Legacy of a molecular dynamics trailblazer

alt
Chemists Martin Karplus (L) and J. Andrew McCammon (R) in Sweden in 1982

Computer simulations meet biochemistry

Life is motion. And so, to understand how living organisms function, one must understand the movement and reorganisation of the atoms and molecules that compose them. The approach called “molecular dynamics simulation” enables scientists to use computer programmes to simulate the dynamic motion of all the atoms in a molecular system as a function of time.

In a new paper in EPJ H: Historical Perspectives on Contemporary Physics, Daniele Macuglia from Peking University in Beijing, China, Benoît Roux from the University of Chicago, USA, and Giovanni Ciccotti from the University of Rome, Italy, explain how the theoretical chemist Martin Karplus and his team carried out the first molecular dynamics simulation of a large biological molecule, a protein, deeply impacting biology and the physical sciences in the 20th and 21st centuries. Currently, machine learning researchers are using biomolecular simulations to better understand their time-dependent motions and the function that governs the forces between them.

Read more...

EPJ H Highlight - Fermi’s ground-breaking figure

alt
Fermi’s radial wave function

How the radial wave function transformed physics

One way to better understand an atom is to shoot a particle at it and infer the atom’s properties based on how the particle bounces off it. In the mid-1930s, the physicist Enrico Fermi showed that one measurable number – the scattering length – illuminated everything that could be known about an electron scattering off an atom, or a neutron scattering off a nucleus. In a new paper in EPJ H: Historical Perspectives on Contemporary Physics, Chris Gould from North Carolina State University in Raleigh, USA, explains how Fermi’s simple sketch of a radial wave function laid the groundwork for a better understanding of low energy scattering phenomena, and led in turn to the concept of the pseudopotential, widely used in many areas of physics, including ultracold atom research and studies of qubits in realisations of quantum computers.

Read more...

EPJ H Highlight - A step towards quantum gravity

alt
Representation of the Earth affecting the curvature of spacetime. https://commons.wikimedia.org/wiki/ File:Spacetime_lattice_analogy.svg Mysid, CC BY-SA 3.0.

Resolving the problem of time

In Einstein’s theory of general relativity, gravity arises when a massive object distorts the fabric of spacetime the way a ball sinks into a piece of stretched cloth. Solving Einstein’s equations by using quantities that apply across all space and time coordinates could enable physicists to eventually find their ‘white whale’: a quantum theory of gravity. In a new article in EPJ H: Historical Perspectives on Contemporary Physics, Donald Salisbury from Austin College in Sherman, USA, explains how Peter Bergmann and Arthur Komar first proposed a way to get one step closer to this goal by using Hamilton-Jacobi techniques. These arose in the study of particle motion in order to obtain the complete set of solutions from a single function of particle position and constants of the motion.

Read more...

EPJ H Highlight - Revisiting the history of CPT theorem

alt
CPT theorem was vital to our understanding of how particles and their antiparticles behave. Credit: Robert Lea

A new review looks at an important and often overlooked aspect of physics that suggested symmetry in the particle zoo and how it could be broken.

At the beginning of the 20th century the development of quantum mechanics and relativity changed the face of physics forever. While much has been written about this revolution, less is known about the development of the CPT theorem — vital to quantum field theory and modern physics.

A new paper published in EPJ H and authored by Alexander S. Blum and Andres Martınez de Velasco from Max Planck Institute for the History of Science, Berlin, looks at the roots of CPT theorem and its influence over modern physics.

Read more...

EPJ H Highlight - Documenting the first attempt at a gravitational-wave observatory in Europe

alt
Binary neutrons stars generate ripples in spacetime, gravitational waves, detected here on Earth by interferometers like LIGO. Credits: R. Hurt/Caltech-JPL

EUROGRAV was set to be a network of gravitational wave antennas in Europe. A new paper looks at the reasons it never happened.

First predicted in Einstein’s theory of general relativity, gravitational waves are tiny ripples in spacetime generated by titanic and powerful cosmic events. The great physicist believed that no equipment would ever be sensitive to detect these faint cosmic ripples. Fortunately, Einstein was wrong, but that doesn’t mean that the detection of gravitational waves has been easy.

The history of a planned array interferometer gravitational wave detectors to be built in Europe during the late 1980s, the reasons this failed, and the parallels with current detectors, are documented in a new paper published in EPJ H, authored by Adele La Rana, University of Verona, and INFN Section of Sapienza University, Italy.

Read more...

EPJ H Highlight - Acknowledging Fermi’s contributions to early quantum statistics

alt
Fermi’s research was notably independent. https://en.wikipedia.org/wiki/ Enrico_Fermi#/media/File: Enrico_Fermi_1943-49.jpg

Enrico Fermi’s ideas played a key role in the origins of quantum statistics, but so far, they have been largely overlooked in historical analysis

Within large systems of identical fermions, Fermi-Dirac statistics describes how identical fermions may never occupy the same quantum state. First introduced by Italian physicist, Enrico Fermi, this concept was a key step in our early understanding of quantum mechanics – yet so far, Fermi’s contributions have been largely overlooked in historical analysis. Through new research published in EPJ H, Enric Pérez and Joana Ibáñez, both at the University of Barcelona, Spain, offer a critical analysis of Fermi’s ideas, and assess their immediate impact on our early conceptions of quantum mechanics.

Read more...

Editors-in-Chief
David Blaschke, Thomas Duguet and Maria Jose Garcia Borge
We are grateful to the referees for their very detailed review of our manuscript and for the important remarks and corrections. The referees are very nice experts of the subject of the paper. The manuscript has been revised with our pleasure. Thank you very much for the choice of the referees who were high level experts and kind scientists.

Avazbek Nasirov, Joint Institute for Nuclear Research, Moscow Region, Russian Federation

ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and
Springer-Verlag