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Abstract. Single-molecule experiments on double-stranded B-DNA stretching have revealed one or two
structural transitions, when increasing the external force. They are characterized by a sudden increase
of DNA contour length and a decrease of the bending rigidity. The nature and the critical forces of
these transitions depend on DNA base sequence, loading rate, salt conditions and temperature. It has
been proposed that the first transition, at forces of 60–80 pN, is a transition from B to S-DNA, viewed
as a stretched duplex DNA, while the second one, at stronger forces, is a strand peeling resulting in
single-stranded DNAs (ssDNA), similar to thermal denaturation. But due to experimental conditions
these two transitions can overlap, for instance for poly(dA-dT). In an attempt to propose a coherent
picture compatible with this variety of experimental observations, we derive an analytical formula using a
coupled discrete worm-like chain-Ising model. Our model takes into account bending rigidity, discreteness
of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit of zero force, this model
simplifies into a coupled model already developed by us for studying thermal DNA melting, establishing
a connection with previous fitting parameter values for denaturation profiles. Our results are summarized
as follows: i) ssDNA is fitted, using an analytical formula, over a nano-Newton range with only three free
parameters, the contour length, the bending modulus and the monomer size; ii) a surprisingly good fit on
this force range is possible only by choosing a monomer size of 0.2 nm, almost 4 times smaller than the
ssDNA nucleobase length; iii) mesoscopic models are not able to fit B to ssDNA (or S to ss) transitions;
iv) an analytical formula for fitting B to S transitions is derived in the strong force approximation and
for long DNAs, which is in excellent agreement with exact transfer matrix calculations; v) this formula
fits perfectly well poly(dG-dC) and λ-DNA force-extension curves with consistent parameter values; vi) a
coherent picture, where S to ssDNA transitions are much more sensitive to base-pair sequence than the
B to S one, emerges. This relatively simple model might allow one to further study quantitatively the
influence of salt concentration and base-pairing interactions on DNA force-induced transitions.

1 Introduction

In the recent decades, many experimental developments
have been devoted to the manipulation and analysis of
single molecules such as nucleic acids and proteins, prov-
ing to be invaluable tools to understand their statistical
and mechanical properties [1]. They include atomic force
microscopy (AFM) [2], fluorescence microscopy [3], teth-
ered particle motion [4], as well as magnetic and optical
tweezers [5–8]. Understanding the mechanical properties
of nucleic acids at the nanometric scale is crucial because
they play a role in both their biological functions and their
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packaging in a variety of circumstances, such as interaction
with other macromolecules (e.g. histones or ribosomes),
DNA cyclization, DNA looping in some genetic regula-
tory processes, or nucleic acid packing in viruses. Further-
more, single-molecule measurements on nucleic acids give
the possibility to investigate their interactions with part-
ner proteins [1, 8].

The present work primarily focuses on the response
of nucleic acids to an external force applied without tor-
sional constraint, e.g., by optical tweezers or AFM. Such
experiments on double-stranded DNA (dsDNA) at room
temperature show a sharp, few picoNewtons wide, coop-
erative overstretching “transition”1 at a given “critical”
force of around 60–80 pN, accompanied by a sudden 70%
increase of the contour length [5, 6].

1 This transition is not a true, thermodynamical transition
stricto sensu, but this terminology is widely used in the field.
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By applying forces up to 800 pN, Rief et al. [2,9] mea-
sured a second transition at stronger forces, which is hys-
teretic and consistent with a peeling of one strand from its
complementary strand. They show moreover that the crit-
ical force of this second transition depends dramatically
on the DNA sequence, from 150 pN for λ-phage DNA to
320 pN for poly(dG-dC). They did not measure any second
transition for poly(dA-dT).

The nature of the first transition at 60–80 pN re-
mains controversial because it is not definitely established
whether it is a transition from the native B-form to a new
form of unstacked DNA remaining in a duplex form (the
so-called “S” form for Stretched), or double-strand separa-
tion leading to two single-stranded DNA (ssDNA) similar
to the thermal denaturation. This controversy [10] is re-
viewed in detail, e.g., in the refs. [11–14]. In particular,
in van Mameren’s experiment [11], fluorescent molecules
binding specifically to ssDNA were added to the solution.
The fact that they do bind to the stretched form is thus in
favor of a ssDNA scenario [11,15]. However, these specific
molecules, having a higher affinity for ssDNA, are likely
to shift the chemical equilibrium in favor of ssDNA to the
detriment of the S form. Some authors even argue that
the nature of the transition depends on the loading rate,
the slowest rates enabling equilibration and thus denatu-
ration under force [16, 17]. In a very recent work [18–20],
two different transitions, both occurring at 60–80 pN for
λ-phage DNA, have been revealed experimentally, one is
a hysteretic strand peeling whereas the other is a non-
hysteretic transition that leads to S-DNA. The selection
between this two transition depends on the DNA sequence
and the salt concentration. Such study may thus reconcile
the previous ones, once a careful comparison of both the
experimental salt concentrations and the sequence of the
studied DNAs will be done.

Previous arguments for a B to S-DNA transition was
that the part of the force-extension curve beyond the tran-
sition does not fit with a Worm-like Chain (WLC) model
with the bending modulus and the monomer size of ss-
DNA [5, 6, 21]. However, the simpler stretching experi-
ment on single ssDNA is already not easily fitted by the
WLC model. Several explanations have been put forward,
such as electrostatic interactions [22], discreteness of the
chain [23], and non-linear bond stretching [24]. Using a
variational continuous WLC model with linear stretch-
ing, Storm and Nelson [25, 26] were able to fit ssDNA for
forces smaller than 0.1 nN but with an extremely low value
for the monomer size between 0.1 and 0.25 nm. Moreover,
multiple pathways and plateaux have also been observed
recently in poly(dA) force-extension curves [27,28].

Generally, the challenge is to propose a consensual
mechanism compatible with this variety of experimen-
tal observations. For instance, no adequate analytical
formula exists for fitting dsDNA force-extension curves
including the transitions. Since the experimental force-
extension curves are measured for forces that range from
0 to 800 pN, the model should scan both the low force
regime where bending and entropic effects are important
and the strong force regime where bond extension is non-

negligible. Existing theoretical works use thermodynam-
ical approaches [10], interpolations [29, 30] between two
(semi-)flexible chains using the Marko-Siggia interpolation
formula [31], generalized Poland-Scheraga models with ex-
ternal force [32, 33], two-state continuous WLC models
treated variationally [25,26], or three-state models [14,21].

In the present paper, we first focus on ssDNA force-
extension curves and provide an accurate analytical for-
mula for fitting the stretching curves up to 1 nN (sect. 2).
This formula includes bending rigidity (which plays a
central role in the low force regime), discreteness of the
chain, and non-linear stretching already studied by Hügel
et al. [24] (which has been shown to be very important for
forces stronger than a few hundreds of pN). We then show
that describing a hypothetic B to ssDNA transition with
models that do not consider explicitly the increase of the
number of sub-nucleobase degrees of freedom scanned in
the high force regime is out of reach.

Next, we use, in sect. 3, a mesoscopic approach
to model the B to S transition. This is a coupled
Ising/Heisenberg model which is an extension of the
mesoscopic model that we had introduced in 2007 for
the description of temperature-induced melting of ds-
DNA [34,35]. This model is first solved exactly in sect. 3.1
using pseudo-analytic transfer matrix calculations, follow-
ing the same formalism as Rahi et al. [36]. We then pro-
pose a simple analytical formula in the strong force ap-
proximation (sect. 3.2), which is in excellent agreement
with the exact results.

Finally, we compare our formulas (the fitting proce-
dures are summarized in the appendix) to experimental
force-extension curves in sect. 4 and show surprisingly
good agreement with several data sets for poly(dG-dC)
and λ-DNAs2. Since our model is on the same footing
as the one describing DNA thermal denaturation, we pro-
pose an analytical formula for the “coexistence” line in the
temperature-force diagram. Our final remarks are given in
the Conclusion.

2 Single-strand DNA stretching

Before considering the transitions observed in dsDNA
stretching experiments, we focus on ssDNA which is a
good candidate for modeling a semiflexible chain under
external load from 0 to 1 nN. At very large forces, the
discrete nature of the polymer is probed, and it has been
shown that force-extension curves are satisfactorily mod-
eled by a freely jointed chain (FJC) model in the strong
force regime [2,23,24,37–39]. We thus focus on the discrete
worm-like chain model (WLC), where the chain made
of N monomers of size a is described by the effective

2 In our mesoscopic type of approach, λ-phage DNA is mod-
eled with averaged, non-sequence-dependent, parameters, since
self-averaging is expected for long DNAs as used in experi-
ments. Taking explicitly the sequence into account would re-
quire solving numerically our model, which might hinder gain-
ing the physical insights into mechanisms at play.
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Hamiltonian

HDWLC =
N−1∑

i=1

κb(1 − ti · ti+1) −
N∑

i=1

afti · ẑ, (1)

where ti is the normalized orientation of monomer i, and
κb is the bending elastic modulus. The applied force is
taken to be along z, f = fẑ. The partition function is
given by

Z =
N∏

i=1

a2

∫
dti e−βHDWLC . (2)

The factor a2 is the entropic contribution of the integra-
tion factor in phase space

∫
d(ri+1 − ri)δ(|ri+1 − ri| −

a)(. . .) = a2
∫

dt(. . .). The extension of the polymer along
the direction of the force f is given by

z ≡ 〈ẑ · [rN − r1]〉 =
∂ lnZ
∂βf

. (3)

The mean-squared end-to-end distance at zero force in the
limit N → ∞ reads [35]

〈R2〉 = a2N
1 + u(κ)
1 − u(κ)

, (4)

where u(x) = coth(x) − 1/x is the Langevin function and
κ = βκb is the adimensional bending modulus. The dis-
crete persistence length is thus �p = −a/ ln u(κ). Since we
consider a semi-flexible chain, we assume κ � 1.

At small forces, such that the chain is only slightly
deformed in the z-direction, the chain can be viewed as a
linear string of Pincus blobs [40] of size ξ = 1/(βf), with
L > ξ > �p > a, where L = aN is the contour length of
the polymer. Hence in this regime where βaκf < 1, the
linear response theory is valid and yields for the extension

z � kBT
∂2 lnZ

∂f2

∣∣∣∣
f=0

f =
〈R2〉
3kBT

f, for f < f̄ ≡ kBT

aκ
.

(5)
Note that this relation is modified in good solvent accord-
ing to the scaling law z � L(f/f̄)2/3. In the following
we neglect the eventual polymer swelling of DNA in water
due to van der Waals [40] or electrostatic interactions [41].
Moreover the electrostatic contribution to the persistence
length which might be important for flexible chains such
as ssDNA is taken implicitly into account by choosing κ
as a fitting parameter [42,43].

At very large forces, f � 4κb/a, we see from eq. (1)
that the bending energy can be neglected in the Hamil-
tonian and the freely jointed chain model is valid. The
force probes the discrete nature of the chain since the Pin-
cus blob size is much smaller than the monomer size a,
ξ 	 kBT/(4κba). One thus finds the classical Langevin
result [44]

z � L u(aβf) � L

(
1 − 1

aβf

)
, for f � kBT

a
. (6)

For intermediate forces, (kBT )2/(aκb) < f < 4κb/a,
the two terms in eq. (1) should be taken into account, al-
though the bending energy is negligible in the z-direction.
Following Marko and Siggia [31], we use the approxima-
tion of large forces, which states that ti is mostly along
ẑ (|tiz| � |tix|, |tiy|) and thus |tiz| =

√
1 − t2ix − t2iy �

1 − (t2ix + t2iy)/2. By noting that κ(1 − ti · ti+1) =
1
2κ(ti − ti+1)2, the partition function can be rewritten
as Z =

∏N−1
i=1

∫
dtidti+1P̂ (ti, ti+1), where P̂ (ti, ti+1) ≡

a2eF K(tx,i, tx,i+1)K(ty,i, ty,i+1) is the transfer operator
to be diagonalized. The eigenvalue equation is

a2eF

∫ ∞

−∞
dt′xK(tx, t′x)φx(t′x)

∫ ∞

−∞
dt′yK(ty, t′y)φy(t′y)

= Λφx(tx)φy(ty), (7)

where we define the adimensional force F = aβf and

K(t, t′) = exp
[
−κ

2
(t − t′)2 − F

4
(t2 + t′2)

]
. (8)

This transfer kernel problem has first been solved by Fix-
man and Kovac [45] using a mode decomposition for a
discrete worm-like chain with extensible bonds (without
applied force), and then extended to the force case in
refs. [37–39]. For the sake of clarity and as an introduction
for the more complex case developed in the next section,
where the mode decomposition is not applicable, we re-
derive the calculation in the following by using a different
approach, i.e. solving eq. (7) directly in real space.

We define φ1(t) and φ2(t′) such that
∫ ∞

−∞
dt′ exp

[
−κ

2
(t − t′)2−F1

4
t2−F2

4
t′2

]
φ2(t′)=λφ1(t).

(9)
If φ1(t) = exp(−α1t

2/2) and φ2(t′) = exp(−α2t
′2/2), we

find

α1 = κ +
F1

2
− κ2

κ + F2
2 + α2

and λ =

√
2π

κ + F2
2 + α2

.

(10)
If F1 = F2, then φ1 = φ2 is an eigenfunction for α1 = α2 =
α =

√
(F/2)2 + κF and Λ = λ2. The partition function

in the limit N → ∞ is thus

Z � eNF

⎛

⎝ 2πa2

κ + F
2 +

√(
F
2

)2
+ κF

⎞

⎠
N

(11)

and the extension defined in eq. (3) is

z = L

(
1 − 1√

F 2 + 4κF

)
. (12)

Again this formula is only valid for large forces, i.e. for
F � 1/κ. Note that eq. (12) encompasses the very strong
force regime F � 4κ where the result of eq. (6) is recov-
ered.
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An interpolation formula for the whole range of forces
can be obtained following Marko and Siggia [31] by invert-
ing eq. (12), subtracting the first two terms of the small z
expansion of F (z/L), and then adding the zero force limit
eq. (5). This yields the discrete Marko-Siggia interpola-
tion [37]

FDMS ≡ afDMS

kBT
=

z

L

(
3
1 − u(κ)
1 + u(κ)

− 1√
1 + 4κ2

)

+

√
1

(1 − z/L)2
+ 4κ2 −

√
1 + 4κ2. (13)

Experimentally, one observes that, at very large forces,
f > kBT/a, the DNA starts to stretch elastically and the
FJC result, eq. (6), must be corrected so that z > L. Dif-
ferent models try to take this into account by using a linear
correction [31], or using an extensible DWLC model [37].
However, it has been shown recently by Hügel et al. that,
beyond elastic stretching, non-linear terms are necessary
to fit force-extension curves of peptides or polyvinyl-amine
as well as ssDNA [24]. A consistent way is to modify
eq. (12) according to

z = L [1 + Unl(f)]
(

1 − 1√
F 2 + 4κF

)
, (14)

where

Unl(f) = 1.172777 f − 3.731836 f2 + 4.118249 f3 (15)
(f in units of 10 nN)

is extracted from ref. [24] (by inverting their eq. (2)) and
is the result of ab initio quantum calculations for ssDNA.
Corrections are on the order of ≈ 1% for f � 100 pN, of
≈ 10% for � 1 nN.

To reconcile the low force regime where eq. (13) is cor-
rect and the large force regime, eq. (14), where non-linear
elasticity is non-negligible, we fit the experimental data for
ssDNA using the interpolation eq. (13) with z replaced by
z(1 + Unl(f)) in the rhs. It yields

af

kBT
=

z

L
(1 + Unl(f))

(
3
1 − u(κ)
1 + u(κ)

− 1√
1 + 4κ2

)

+

√
1

[1 − z(1 + Unl(f))/L]2
+ 4κ2 −

√
1 + 4κ2. (16)

This non-linear equation is easily plotted using a para-
metric plot if we replace Unl(f) by Unl(fDMS), where
fDMS is defined in eq. (13). We have checked that this
approximation is extremely good for forces in the nano-
Newton range. We use eq. (16) to fit experimental data
with only three fitting parameters, namely the polymer
contour length L, the adimensional bending modulus κ
and the monomer size a.

The comparison with experimental data taken
from [24] (kindly supplied by R.R. Netz) is shown in
fig. 1(a) and (b). The fit using eq. (16) is quantitatively
good (the curve remains within the experimental error

Fig. 1. (a) Extension vs. force for a ssDNA. Data (symbols)
are taken from Hügel et al. [24]. The black solid curve corre-
sponds to a fit using the discrete worm-like chain interpolation
with the non-linear bond elasticity, eq. (16) (the red one cor-
responds to discrete Marko Siggia interpolation eq. (13)). The
parameters values are: L = 3.40 μm, κ = 1.5, a = 0.20 nm.
(b) Zoom of (a) for small forces, together with the strong force
limit eq. (12) (green).

bars) and yields the following values for the fitting pa-
rameters: L = 3.40μm, κ = 1.5 and a = 0.20 nm. This fit
is very constrained since it is done on a very large range
of forces, form 0 to 1200 pN.

A first remark is that, although the persistence length
is quite small, �p = −a/ ln u(κ) � 0.24 nm ≈ a, the role
of κ is non-negligible in the low force regime and setting
κ = 0 (FJC model) leads to a poorer fit (data not shown).

As shown in fig. 1(b), the interpolation (black curve),
eq. (16) starts to deviate slightly from eq. (13) (red
curve) for f > 150 pN. Simply put, as already said by
Hügel et al. [24], the non-linear stretching starts to play
a significant role. Moreover, for f > 400 pN, we have
1/
√

F 2 + 4κF � F−1 < 0.05 which becomes smaller
than Unl(400 pN) = 0.04 in eq. (14). In other words, for
f > 400 pN, the entropy becomes negligible, the influence
of κ and a on the fit is small and the extension-curve is
dominated by the non-linear stretching.

Although the L and κ values were expected, the ef-
fective monomer length a = 0.20 nm is much smaller than
the distance between two consecutive bases in DNA, ass ≈
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0.7 nm. We define a corrective factor b = a/ass = 0.285
which is the ratio between the fitted monomer size value
a and the expected ss base size ass. Note that Storm
and Nelson [26] found similar values (a = 0.17 nm) by
using a Ritz variational approximation and fitting only
on the [0, 200 pN] range. References [23, 24] focus on the
non-linear elasticity which is significant for forces larger
than 400 pN. By using a non-linear Freely Rotating Chain
model at large forces they found a monomer size mul-
tiplied by 2 for polyvinylamin [23, 24] and a smaller
monomer size by a factor 0.5 to 0.8 for peptides [46]. In
our case, the actual monomer length probed by a strong
applied force is thus 1/b = 3.5 times smaller than the
inter-base distance for ssDNA. In other words, the num-
ber of degrees of freedom N for such strong forces increases
by a factor 3.5.

This increase of N at large forces raises an important
question about a transition B-DNA to ssDNA in stretch-
ing force experiments. How to model this change using a
mesoscopic model? This increase probably occurs abruptly
during the transition and is likely to include chemical
modifications unaccessible to classical mechanics.

3 Analytical model for B to S-DNA
transitions

While the previous section casts some doubt upon the ad-
equacy of a mesoscopic model to model the B to ssDNA
transition, we show in this section that it is possible to
describe the B to S transition using such type of model.
We use a Ising-Heisenberg coupled model, which has al-
ready been used by us for the theory of DNA denatura-
tion [34, 35]. Other works have used such types of mod-
els [25,26]. In this model, each base-pair i is described by:
1) its normalized orientation ti with Ωi = (θi, ϕi) the solid
angle with respect to a fixed reference frame (x̂, ŷ, ẑ), 2) its
internal state σi = ±1 (corresponding to B or S base-pair
internal state), and 3) its length a(σi). By generalizing
eq. (1), the effective Hamiltonian is

βH =
N−1∑

i=1

[κ(σi, σi+1)(1 − ti · ti+1) + HI(σi, σi+1)]

−
N∑

i=1

βa(σi)fti · ẑ. (17)

Compared to eq. (1), the bending modulus κ(σi, σi+1)
now depends on the internal state of base pairs i and i+1
(we also note in the following ti · ti+1 = cos γi,i+1) and
the additional term

HI(σi, σi+1) = −Jσiσi+1 −
μ

2
(σi + σi+1) (18)

is the internal Ising free energy associated with base pair
i and its interaction with base pair i + 1 (2μ is the energy
necessary to break one base-pair and 2J is the energy of
a domain wall) [34,35].

The transfer operator P̂ is then defined by

〈Ωi, σi|P̂ |Ωi+1, σi+1〉

= a2(σ) exp
[
−HI(σi, σi+1) + κ(σi, σi+1)

×(cos γi,i+1 − 1) + βa(σi)f cos θi

]
(19)

= a2(σ) exp
[
−HI(σi, σi+1) +

κ(σi, σi+1)
2

×(ti − ti+1)2 + βa(σi)ftiz

]
. (20)

3.1 Exact diagonalization of P̂

The idea of dealing with the WLC model under forces
in the spherical harmonics basis goes back to Marko and
Siggia [31], even though their use in different but related
fields of physics goes back to the 70 s [47]. In the present
case, we diagonalize P̂ by using the decomposition of a
plane wave in spherical waves

eκ cos γi,i+1 =
√

π

2κ

∞∑

�=0

I�+ 1
2
(κ)

×
�∑

m=−�

Y�m(Ωi+1)Y ∗
�m(Ωi), (21)

which implies that Y�m is an eigenvector of eκ cos γi,i+1 [48]
∫

dΩi

4π
eκ cos γi,i+1Y�m(Ωi) =

√
π

2κ
I�+ 1

2
(κ)Y�m(Ωi+1).

(22)
Note that the prefactor of Y�m in the r.h.s. term is the
spherical Bessel function usually denoted by i�(κ) and that
we also used the notation e−κi�(κ) = e−G�(κ) in ref. [35].

If f = 0, P̂ is block-diagonal in each (�,m) subspace
with matrix elements (we switch to lighter notations):

〈�m, σ|P̂ |�′m′, σ′〉=a2(σ) exp [−G�(κ(σ, σ′))−HI(σ, σ′)] .
(23)

They depend on � but not on m. When diagonalizing
each 2 × 2 block, the eigenvalues are denoted by λ�,±
and the eigenvectors by |�,±〉. The partition function is
Z = (4π)N

∑
±,�(2� + 1)λN

�,± in case of periodic bound-
ary conditions and by Z = (4π)N

∑
�,±〈V |0,±〉2λN

�,± in
case of free ends (where |V 〉 is the adequate free-end vec-
tor) [35]. Of course, boundary conditions are irrelevant at
large N [49], and we have checked that finite-size effects
are negligible for the DNAs studied in the experiments
considered in the following.

If f �= 0, P̂ is block-diagonal, but blocks are now in-
finite because different values of � are coupled. A block
thus corresponds to a given value of m. Equation (22) has
to be adapted to this case [36, 49–51] (note that contrary
to [36], we do not need to explicitly treat the two single
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strands in the B to S transition). In Dirac notations, we
have

〈�m|eκ(cos γ−1)+F cos θ|�′m′〉
= 4π(−1)mδm,m′

√
(2� + 1)(2�′ + 1)e−κi�′(κ)

×
∞∑

�1=0

(2�1 + 1)
(

�1 � �′

0 0 0

)(
�1 � �′

0 m −m

)
i�1(F ), (24)

where we have used Wigner 3j-symbols (and m ≤ �, �′).
Such use of Wigner 3j-symbols already appeared in Blume
et al. [47]. In this expression, κ means κ(σ, σ′) and a means
a(σ). In practice, to diagonalize each infinite block, a cut-
off �max ≈ 8 on � must be chosen (larger values of � do
not give significantly different results). Once P̂ is diago-
nalized, Z can be computed, from which the extension z
is derived.

3.2 Strong force approximation

Similarly to sect. 2, we use now the description of P̂ in
tangent vectors ti. An extension of the spinor eigenvector
equation is now, in a symmetric form

∫
dt′

(
a2
+eμ+J K++(t, t′) a+a−e−J K+−(t, t′)

a−a+e−J K−+(t, t′) a2
−e−μ+J K−−(t, t′)

)

×
(

Φ+(t′)
Φ−(t′)

)
= Λ

(
Φ+(t)
Φ−(t)

)
, (25)

where Λ is the eigenvalue and Φσ(t) = φxσ(t)φyσ(t)
are the unknown eigenfunctions. The transfer operator
Kσσ′(t, t′) = Kσσ′(tx, t′x)Kσσ′(ty, t′y) with σ, σ′ = ± is
the generalization of eq. (8), where

Kσσ′(t, t′) = exp
[
− 1

2
κ(σ, σ′)(t − t′)2 − 1

4
F (σ)t2

−1
4
F (σ′)t′2

]
. (26)

Searching for an exact diagonalization of the transfer
matrix is difficult because a Gaussian wave such as in
sect. 2 is no more an exact eigenfunction. This is due to
the fact that cross-terms are not symmetric in t and t′:
K1,−1(t, t′) �= K1,−1(t′, t) (but K1,−1(t, t′) = K−1,1(t′, t)).
For the same reason, the Ritz variational scheme [25, 26]
does not work for this model with a Gaussian variational
eigenfunction.

Nevertheless, eigenfunctions are Gaussian in 3 limits:
1) the homogeneous chain (this has been proved in sect. 2),
2) the zero force limit f = 0, and 3) in the freely jointed
chain limit, κi = 0. Indeed, by inserting in eq. (25) Gaus-
sian wave functions φσ = Cσ exp(−ασt2/2) and using
eqs. (9), (10), we find

C+

√
2π

κ+++ F+
2 +α+

e−α++t2/2+C−

√
2π

κ+−+ F−
2 +α−

×e−α+−t2/2 = λe−α+t2/2, (27)

C+

√
2π

κ−++ F+
2 +α+

e−α−+t2/2+C−

√
2π

κ−−+ F−
2 +α−

×e−α−−t2/2 = λe−α−t2/2, (28)

where

ασσ′ = κσσ′ +
Fσ

2
− κ2

σσ′

κσσ′ + Fσ′
2 + ασ′

. (29)

By assuming α±± = α± =
√

(F±/2)2 + κ±±F±, and di-
viding eqs. (27), (28), respectively, by exp(−α±t2/2), one
finds

C+

√
2π

κ++ + F+
2 + α+

+ C−

√
2π

κ+− + F−
2 + α−

×e(α+−α+−)t2/2 = λ, (30)

C+

√
2π

κ−+ + F+
2 + α+

e(α−−α−+)t2/2

+C−

√
2π

κ−− + F−
2 + α−

= λ. (31)

It is then straightforward to check that in case 2) (f = 0),
we have α±∓ = 0 = α± and in case 3) (κσσ′ = 0) α±∓ =
F±/2 = α± and the Gaussians of the cross-terms are equal
to 1.

To proceed further, we make the approximation that
the Gaussians in eqs. (30), (31) are negligible and thus
assume that they are equal to 1 for all the parameter val-
ues. This allows us to write an effective Ising model since
eqs. (30), (31) do not depend on t anymore. Hence, coming
back to eq. (25), the transfer matrix reduces to a simpler
2 × 2 Ising transfer matrix

P̂eff = eΓ0

(
eμ0+J0 e−J0−δ

e−J0+δ e−μ0+J0

)
, (32)

with force- and temperature-dependent Ising parameters
(we switch to the subscripts B for B-DNA instead of +,
and S instead of − for S-DNA):

μ0 = μ − ln γ + F
1 − γ

2
+

1
2

ln
(

κS + Fγ/2 + αS

κB + F/2 + αB

)
,

(33)

J0 = J +
1
4

ln
[
(κSB + F/2 + αB)(κSB + Fγ/2 + αS)
(κB + F/2 + αB)(κS + Fγ/2 + αS)

]
,

(34)

Γ0 = ln(2πγ) + F
1 + γ

2
− 1

4
ln

[ (
κSB +

F

2
+ αB

)

×
(

κSB +
Fγ

2
+ αS

) (
κB +

F

2
+ αB

)

×
(

κS +
Fγ

2
+ αS

)]
, (35)

δ =
1
2

ln
(

κSB + F/2 + αS

κSB + γF/2 + αB

)
, (36)
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where

γ ≡ aS

aB
, αB =

√

κBF +
(

F

2

)2

,

αS =

√

κSγF +
(

γF

2

)2

. (37)

In the limit N → ∞, the partition function is then
given by Z = ΛN where the largest eigenvalue of the Ising
matrix is3

Λ = eΓ0+J0

(
cosh μ0 +

√
sinh2 μ0 + e−4J0

)
. (38)

The “magnetization” and the two-point correlation func-
tion of this effective Ising model are (see ref. [35])

〈σi〉 =
sinhμ0√

sinh2 μ0 + e−4J0
, (39)

〈σiσi+1〉 = 〈σi〉2 +
(
1 − 〈σi〉2

)

×cosh μ0 −
√

sinh2 μ0 + e−4J0

cosh μ0 +
√

sinh2 μ0 + e−4J0
, (40)

where eq. (39) yields the fraction of base-pairs in the B
(respectively, S) state

ϕB,S(F ) =
1 ± 〈σi〉

2
(41)

as a function of the force. The extension computed ac-
cording to eq. (3) is thus

z

aBN
=

(
1− 1

2αB

)
ϕB+γ

(
1− 1

2αS

)
ϕS +

〈σiσi+1〉−1
4

×
(

1
2αB

κB − κBS

κBS + F/2 + αB
+

γ

2αS

κS − κBS

κBS + γF/2 + αS

)
,

(42)

which shows that the last term is only relevant close to
the transition where 〈σiσi+1〉 �= 1.

Equation (42) is the second important result of the pa-
per. As it is constructed, this formula is an interpolation
between several limits. First, the result for a homogeneous
chain in the strong force approximation, eq. (12), is recov-
ered by setting κB = κS = κBS and γ = 1 in eq. (42).
Second, in the zero force limit F = 0, eqs. (33), (36) sim-
plify to

μ0 = μ +
1
2

ln
(

κS

γ2κB

)
, J0 = J +

1
4

ln
(

κ2
SB

κBκS

)
,

Γ0 =
1
4

ln(κ2
SBκBκS) − ln(2πγ), δ = 0, (43)

3 The parameter δ does not enter the eigenvalues but slightly
changes the eigenvectors compared to the true Ising problem,
which is negligible in the N → ∞ limit.

which are the renormalized Ising parameters already found
in [52]. The FJC model corresponds to κB = κS = κBS =
0, and eq. (42) reduces to

z

aBN
= (ϕB + γϕS) − 1

F
, (44)

which is eq. (6) slightly modified to take into account to
the two accessible values for the base pair length ai.

Finally, far from the transition, defined as 〈σi〉 = 0
or equivalently μ0(fc) = 0 for infinitely long DNAs, that
is for forces such that 〈σiσi+1〉 = 1, we find B- (or S-)
stretching behaviour, for μ0 > 0 (respectively μ0 < 0):

z

aBN
� 1 − 1√

4κBF + F 2
, f 	 fc, (45)

z

aBN
� γ − γ√

4κSγF + γ2F 2
, f � fc. (46)

This last result is identical to eq. (12) provided that
the extension and the force are renormalized by the S-
monomer length aS = γaB . Equations (45), (46) are a
generalization of the result of Cizeau and Viovy [29] where
the continuous Marko-Siggia interpolation, valid for range
1/κ 	 F 	 4κ, was used.

In experiments, large forces on the order of several
hundreds of picoNewtons are applied to B-DNA such that
helix stretching occurs. This stretching is related to the
torsional elasticity of the double helix, such as for a helical
spring. It is incorporated linearly, following eq. (14), by
replacing f by f(1 + f/EB) [25, 26, 31] in the prefactors
independent of t and t′ in the matrix elements of eq. (25),
where EB (in pN) and the related adimensional ẼB =
βaBEB is the stretching modulus in the B state, taken as
a fitting parameter. Equation (42) becomes4

z

aBN
=

(
1 +

F

ẼB

− 1
2αB

)
ϕB + γ

(
1 − 1

2αS

)
ϕS

+
〈σiσi+1〉 − 1

4

(
1

2αB

κB − κBS

κBS + F/2 + αB

+
γ

2αS

κS − κBS

κBS + γF/2 + αS

)
. (47)

Equations (42), (47) allow us to fit with a high accuracy
the various experimental DNA stretching curves taken
from the literature and also compare perfectly well with
the semi-analytical exact formula, eq. (24), as illustrated
in the next section.

4 Comparison with experimental
force-extension curves

We now compare our theoretical approach to various
experimental data. Some of them, coming from optical

4 Contrary to [25,26], within our discrete chain model, we do
not need to consider any stretching modulus in the S-form to
fit accurately the data. Assuming that the S-form is unstacked
and unwound, the stretching modulus is expected to be close
to the ssDNA one, on the order of 104 pN (see eq. (15)), and
is negligible in this range of forces.
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Fig. 2. (a) Extension vs. force for a poly(dG-dC). Data (blue
symbols) are taken from Rief et al. [2]. Solid curves corre-
spond to the discrete worm-like chain interpolation, eq. (13),
for B-DNA (red), S-DNA (green) and with non-linear extensi-
bility, eq. (16), for ssDNA (pink). The black curve corresponds
to eq. (47), where linear stretching is included as shown by the
blue curve for pure B-DNA. The red symbols correspond to
the semi-analytical calculation eq. (24) with �max = 8. Param-
eters values are: LB = 0.14 μm, κB = 147, γ1 = 1.89, κS =
κBS = 3.8, γ2 = 1.145, b = 0.285, κss = 5.54/(2γ1γ2) = 1.28,
μ = 4.5, J = 1.7, EB = 1200 pN. Inset: Fraction of base-pairs
in the S state vs. force, eq. (41) and Ising correlation function
1−〈σiσi+1〉 defined in eq. (40) (dashed curve). (b) Same as (a)
for λ-phage DNA. Data (blue symbols) are data taken from [2].
Parameters values are: κB = 147, γ = 1.88, κS = κBS = 4,
μ = 3.85, J = 2.05, EB = 1400 pN.

tweezers experiments, are extracted from [26]. Rief et
al. [2] also conducted several experiments using AFM on
λ-phage DNA, poly(dG-dC) and poly(dA-dT) DNAs, in
order to explore the role of base-sequence on DNA stretch-
ing.

4.1 Overstretching transition for poly(dG-dC) and
λ-DNA around 60–80 pN

First, we focus on the B to S transition which occurs for
f = fc � 60–80 pN with small differences related to the
DNA sequence. We compared our analytical result eq. (47)
to experiments made on poly(dG-dC) taken from [2] (see
fig. 2(a)) and λ-phage DNA (fig. 2(b) and fig. 3), and

Fig. 3. Extension vs. force for a λ-phage DNA. Data (sym-
bols) are due to Cui and Bustamante for (a) and Cluzel et
al. [5] for (b), and both taken from Storm and Nelson [26].
The solid curves correspond to the discrete worm-like chain
interpolation, eq. (16), for B-DNA without stretching (red),
with stretching (blue) and ssDNA (green). The black curve
correspond to eq. (47), where linear stretching is included. Pa-
rameters values: κB = 147, κS = κBS = 4, 1/ES = 0, and (a)
γ = 1.795, μ = 4.015, J = 2, EB = 1300 pN; (b) γ = 1.715,
μ = 3.85, J = 1.9, EB = 880 pN.

eq. (47) leads to very good fits of experimental data. The
fitting procedure is detailed in the appendix.

To begin with, we have checked in fig. 2(a) that the
semi-analytical calculation using the result of sect. 3.1 (red
symbols) and the strong force approximation of sect. 3.2
(black solid curve) are superimposed. Note that the results
of sect. 3.1 are done without linear elasticity for B-DNA.
This is the reason why there is a slight difference before
the transition since we have plotted only eq. (47) and not
eq. (42) for sake of clarity. It proves the validity of the
strong force approximation used to derive eq. (47) for the
B to S transition. This is due to the fact that the transition
occurs in the force range (60–80 pN), where f � f̄B =
kBT/(aBκB) � 0.1 pN and f � f̄S = kBT/(aSκS) �
2 pN.

This is also confirmed by the plot of ϕS(f) in the inset
of fig. 2(a), where both results are superimposed. More-
over, the superimposition of eq. (47), valid for N → ∞,
and the results of sect. 3.1 computed for N � 700 provide
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the undisputed evidence that the very small correction
due to finite N lies within error bars. Note that the tran-
sition is abrupt as shown by the plot of 1 − 〈σiσi+1〉 in
fig. 2(a), and eq. (47) gives the two correct limits far from
the transition eqs. (45), (46). In the fitting procedure, the
parameter κBS plays a similar role as the parameter J
(see eq. (34)). This is the reason why we chose κBS = κS .

Furthermore, we notice that the fits of figs. 2 and 3
yield similar values for γ, between 1.72 and 1.89, which
are also comparable to those obtained by Storm and Nel-
son [25,26] for λ-DNA (1.7–1.8). While the bending mod-
ulus of B-DNA is taken to be 147 kBT , the S-DNA one
is much smaller, between 3.8 and 4 kBT . Finally, similarly
to [25,26] we find EB ≈ 1000 pN. Contrary to refs. [25,26],
we do not need to introduce a linear modulus for the S-
form, which can be attributed to the fact that a continuous
WLC model was used in [25,26], instead of a discrete one.

By fitting the transition using eq. (47), one finds
3.85 < μ < 4.5 in kBT units, which are reasonable
values compared to that extracted from the Poland-
Scheraga model [53] and fits of denaturation curves [54].
It is roughly twice the value found for poly(dA)-poly(dT)
in [35, 52], and is consistent with the fact that the GC
base-pairing energy is larger than the AT one. The coop-
erativity parameter J is 1.7 < J < 2.05 which is also rea-
sonable and a little smaller than the value of 3.6 found for
poly(dA)-poly(dT) in [35, 52]. The small variation of the
fitting parameter values from sample to sample are prob-
ably due to the slight differences in DNA sequences and
salt conditions. In fig. 4(a) is plotted, in the (T, f)-plane,
the coexistence line defined by setting μ0(Tm, Fc) = 0 in
eq. (33) with the parameters values of fig. 2(a). It shows
the same behaviour as in refs. [14, 36], with a re-entrance
for (unreachable) high temperatures, and decreases lin-
early in the accessible temperature window [20].

To conclude this section, the fact that eq. (47) allows us
to fit the transition observed experimentally for poly(dG-
dC) and λ-DNA indicates that the second state is indeed
an S state and not an ss state. Indeed, a good fit of a tran-
sition to an ssDNA state around 60–80 pN would impose
a much smaller value of the monomer size as discussed in
detail in sect. 2 and below.

4.2 Second transition for poly(dG-dC) around 350 pN

Rief et al. [2] observed a second transition when they
stretched a poly(dG-dC) at larger forces, around �
350 pN, as shown in fig. 4(b). They argued that this tran-
sition corresponds to a S to ssDNA transition, where the
final state corresponds to one single ssDNA strand which
remains tethered, the second strand being unpeeled [2].
Indeed, this second transition, which is very smooth be-
tween, roughly 200 and 400 pN, shows a hysteresis which
varies with the applied pulling speed of the AFM tip.
They also observed this second transition for λ-DNA at a
smaller force, fc � 150 pN.

Following these arguments, we try to model this sec-
ond transition. First we use the result of sect. 2, where
the value of the actual bond size is a = 0.20 nm. We

Fig. 4. (a) Phase diagram in the temperature-force space cor-
responding to the first transition of fig. 2(a). (b) Fit (black
curve) of the second transition for poly(dG-dC) using eq. (47)
where the linear stretching term is replaced by the non-linear
stretching one for ssDNA given by eq. (15). The green solid
curve is the same as in fig. 2(a) and the red one is the
large force limit eq. (12). The parameters are the same as in
fig. 2(a), NaS = NaBγ1 = 0.265 μm, κS = 3.8, γ2 = 1.145,
κss = κSss = 1.28; and the fitting parameters are μ = 3.8 and
J = 0. Note that, compared to fig. 2(a), the fit is poorer for
ssDNA since no parameter b is introduced.

then fit the experimental data at strong forces in fig. 2(a).
One finds consistently Lss = γ1γ2LB = 2.16LB and
κss = 1.23 � 5.54/(2γ1γ2), where γ1 = aS/aB and
γ2 = ass/aS and the value 5.54 is taken from [34, 35].
These two values correspond to the distance between two
adjacent base-pairs along the helix (≈ 0.7 nm) and to the
accepted bending modulus value of a single ssDNA strand
(persistence length �p ≈ 1 nm [6]). Note that the persis-
tence length of ssDNA can vary a lot with the salt con-
centration [42].

Second, to fit the transition, we use eq. (47) where the
B state becomes the S one and the S state is the ss one.
However, as explained in sect. 2, the change of degrees of
freedom from B to ssDNA should prevent the success of
the fit. But, since the ssDNA form is obtained for f >
400 pN, following sect. 2, the entropy is not dominant for
this force range, the stretching being essentially due to
bond deformations modeled by the non-linear stretching
eq. (15). Hence, in the absence of any model with different
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Fig. 5. Extension vs. force for a poly(dA-dT). Data (sym-
bols) are taken from Rief et al. [2]. The solid curves corre-
spond to the discrete worm-like chain interpolation, eq. (13),
for B-DNA without stretching (red), and with stretching (blue)
and eq. (16) ssDNA (pink) with a small bond size. The
black curve correspond to eq. (47), where linear stretching
is included. Parameters values: NaB = 0.24 μm, κB = 147,
γ = 2.85, κss = κBss = 0.75, b = 0.285, μ = 5.2, J = 1.5,
EB = 800.

degrees of freedom in S and ss states, it is reasonable, as
a first attempt, to keep the same number of degrees of
freedom for this case (see fig. 4(b)): a = ass = γ1γ2aB =
2.16aB (or b = 1).

Within this hypothesis, we are able to fit approx-
imatively the experimental curve by replacing the lin-
ear stretching term, F/ẼB , in eq. (47) by the non-linear
stretching one for ssDNA given by eq. (15). The values of
the fitting Ising parameters for this transition are μ = 3.8
and J = 0. It indicates that this transition is not coopera-
tive at all. This is consistent with the commonly accepted
picture of a destacked S-DNA: during the S to ssDNA
transition, only the breaking of the hydrogen bonds be-
tween base-pairs occurs, the aromatic rings being already
destacked in the S state.

4.3 Nature of the transition for poly(dA-dT)

In fig. 5 an attempt to fit the transition observed for
poly(dA-dT) is displayed. Following Rief et al. [2], we as-
sume a transition from B-DNA to ssDNA. Hence the part
of the curve after the transition is fitted by assuming that
only a single strand remains attached to the cantilever,
the second free strand being splitted off. One thus finds a
good fit (within experimental error bars) by keeping the
same parameter values as for fig. 1 but with a smaller
κss = 0.75 (instead of 1.5 in fig. 1). This difference might
be due to the different base-pair sequence. Two important
remarks can be done. First, the ratio γ = ass/aB is around
2.85, which is significantly larger than the geometrical ex-
pected value of 2.1. It can be attributable either to the use
of eq. (12) with a small Kuhn length, or to the fact that
the z = 0 reference was not well set in the experiment.
Another explanation could be that the spontaneous cur-

vature of the AT sequence [55] decreases the effective bp
length in the B state.

Second and more importantly, we are not able to prop-
erly fit the transition, especially the part of the curve
which is after the transition using eq. (47) (black solid
curve). This is due to the fact that, at the transition, the
number of degrees of freedom increases since for ssDNA
the effective bond length is a = 0.285ass. Taking into ac-
count this fact would require drastically a different model.
Hence we conclude that the B to ssDNA transition can-
not be explained by such a mesoscopic model where the
monomeric unit remains unchanged through the transi-
tion. Writing a model where the number of monomers N
is force-dependent remains challenging.

5 Conclusion

This work intends to clarify some issues related to the
mesoscopic modeling of DNA molecules subject to an ex-
ternal force, which can be applied, for example, by an op-
tical tweezer or an AFM tip. We have focused on both ss-
DNA and dsDNA molecules because it has been suggested
that dsDNA can denaturate under load, thus leading to
two unpaired, single strands.

We have first addressed the modeling of ssDNA un-
der load and provided an analytical formula, eq. (16),
that allows to obtain a very good fit on a wide range
of forces, from 0 to 1 nN. Our main conclusion is that
this molecule cannot be accurately modeled by a poly-
mer, the monomer of which is a nucleobase. This finding
is remarkable: whereas mesoscopic DNA models using the
nucleobase as an elementary building block are usually rel-
evant at small forces, the strong force regime requires the
use of smaller, sub-nucleobase monomers. Under strong
load, the constitutive chemical elements of a nucleobase
play a significant role because they do not constitute a
perfectly rigid entity. This is particularly important if one
wishes to model the B to ss or S to ss transition: writing a
mesoscopic model where the nature of the monomers and
their number varies continuously with an external param-
eter (here the applied force) is challenging and, to our
knowledge, has never been undertaken.

As far as dsDNA is concerned, we have proposed a new
generalization of the extensible, discrete Marko-Siggia for-
mula [37–39] to a two-state model, which describes suc-
cessfully force-extension transitions of semiflexible poly-
mers. During their first transition, λ-phage or poly(dG-
dC) DNAs remain in a duplex form, that we have called
the “S form” as others, where the helix is unwound and
successive bases are unstacked. Equation (47), enables us
to fit accurately experimental B to S transitions and its va-
lidity is corroborated by an exact transfer matrix approach
(which is computationally more complex). These fits, done
on different data sets of λ-DNA and poly(dG-dC) (figs. 2
and 3), yield consistently the same parameter values for
the S-DNA bending rigidity κS � 4 and monomer length
aS/aB � 1.7–1.9, and the Ising parameters, μ = 4.5 and
J = 1.7 for poly(dG-dC), and μ � 4, J = 2 for λ-DNA.
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The latter are consistent with the small but non-negligible
influence of the base sequence.

In contrast, this model is not able to fit the transition
observed for poly(dA-dT) (see fig. 5). Our conclusion is
that poly(dA-dT) is subject to a peeling transition where
dsDNA is denaturated, thus confirming previous analy-
sis [2]. In this ss form, a single strand seems to remain
under load. While the B to S transition can be accurately
modeled because the basic unit (a base) of the model re-
mains the same in the B and S forms, this is not the case
for a B to ss transition. Note that for the S to ss transi-
tion observed for poly(dG-dC) at 320 pN, entropic effects
are negligible and our model still yields an acceptable fit
(see fig. 4(b), using the same parameters for ssDNA as in
fig. 1) but not for λ-DNA. It must be emphasized that
to conclude these points it was central to be able to fit
ssDNA stretching curves on the nanoNewton range.

Put together, these results suggest that when increas-
ing the strength of the base-pairing between both strands
(at a given salt concentration), the nature of the transition
changes. At low base-pairing strength, e.g. for poly(dA-
dT), unpairing occurs at sufficient low forces so that
both unpairing and unstacking transitions are simultane-
ous [14]. At high enough base-pairing strength, in λ-phage
DNA or poly(dG-dC), unstacking occurs first, leading to
the S form, and it is followed at stronger forces by unpair-
ing, leading to the ss form. The effect of base sequence is
much smaller for the B to S transition, maybe because it
is essentially the base stacking which is modified during
the transition. As far as λ-phage DNA is concerned, our
conclusion is in contradiction with ref. [11]. This supports
our previous remark that single-stranded DNA binding
molecules should shift the chemical equilibrium in favor
of ssDNA.

Furthermore, in a very recent work, Zhang et al. [20]
observed, using magnetic tweezers, that B-DNA has two
different structural transitions around 60–70 pN, selected
by the temperature or the salt concentration. They differ
thermodynamically by the sign of ∂fc/∂T at the transi-
tion, slightly positive for the non-hysteretic (probably B
to S) transition and positive for the hysteretic (B to ss)
one. Our approach yields a negative slope for the B to S
transition in the accessible temperature window, as seen
in fig. 4(a), which seems contradictory. However, in our
mesoscopic model, we did not consider solvent or coun-
terions entropy which are implicitly included in our pa-
rameter μ. Taking μ as a function of temperature might
allow us to reconcile these two approaches. This work is
in progress. Our result, eq. (47), may thus be useful to
study, in systematic experiments, the role of the variation
of salt concentrations [56] and base-sequence on stretch-
ing transitions. Since our study aims to bridge the gap
between force-extension curves and thermal denaturation
profiles, one thus could benefit from the huge quantity of
work done on DNA melting [53,54,57].

In addition to stretching by a force, DNA can be tor-
sionally constrained by applying a torque in magnetic
tweezers experiments, possibly revealing additional forms
of dsDNA [7,58]. Some authors suggest that these exper-

iments support the existence of a duplex S-DNA [58]. If
the DNA is not torsionally constrained, we can integrate
out these degrees of freedom, since there is no direct cou-
pling to the force, and arrive at an effective Ising model
that implicitly accounts for torsion (and all other degrees
of freedom not directly coupled to the force) [52]. Other
works focus on the coupling between torque (or superhelic-
ity) and base-pairing [59, 60]. But coupling base-pairing,
bending and torsional degrees of freedom in a realistic
mesoscopic model with both applied force and torque re-
mains challenging.

Finally, we use equilibrium models for describing the
transitions and do not consider effects of loading rates [2,
21, 61], and hysteresis [18–20]. Note however that it has
been shown that rehybridisation [62] of one strand or the
closure of one denaturation bubble [63] are very long pro-
cesses of several μs depending on the DNA length, and
one can expect that such equilibrium approaches remain
valid at moderate loading rates.

We thank Guillaume Gueguen for his participation in this work
as part of his BSc project and Roland R. Netz for kindly pro-
viding us with some experimental data.

Appendix A. How to fit ssDNA experimental
force-extension curves

We recall the equation derived in the text for the force-
extension curve of ssDNA, f(z):

af

kBT
=

z

L
(1 + Unl(f))

(
3
1 − u(κ)
1 + u(κ)

− 1√
1 + 4κ2

)

+

√
1

[1 − z(1 + Unl(f))/L]2
+ 4κ2 −

√
1 + 4κ2, (A.1)

where the ssDNA contour length L, the bending rigidity
modulus κ (in kBT units), and the “effective” monomer
size a (which can differ from the nucleobase length ass �
0.7 nm) are the three unknown parameters. The Langevin
function is u(x) = coth x−1/x and the non-linear stretch-
ing polynomial is Unl(f) = 1.172777 f − 3.731836 f2 +
4.118249 f3 where f must be in units of 10 nN.

Since eq. (A.1) is highly non-linear, a convenient and
extremely accurate simplification is to use f defined by

afDMS

kBT
=

z

L

(
3
1 − u(κ)
1 + u(κ)

− 1√
1 + 4κ2

)

+

√
1

(1 − z/L)2
+ 4κ2 −

√
1 + 4κ2, (A.2)

in the argument of Unl in eq. (A.1). Computing f(z) is
then very simple using, for instance, a spreadsheet.
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Appendix B. How to fit B to S-DNA
transition in experimental force-extension
curves

The fitting procedure is the following: i) We fit the low
force regime, 0 ≤ f ≤ 20 pN, using eq. (13) (identical
to eq. (A.2) above) by fixing the known B-DNA bending
modulus κB = 147 [34, 35]. This amounts to fitting the
scale-parameter for the z-axis, the contour length of B-
DNA NaB (this step is done here only for fig. 2(a) since
the data have already been rescaled in the z-scale for the
other data sets). ii) The stretching modulus ẼB is then
determined by fitting the whole data before the transition
(0 ≤ f ≤ 60 pN). iii) The ratio γ = aS/aB and the bend-
ing modulus of the S form, κS , are fixed by fitting only
the data after the transition using eq. (A.2). iv) Finally
the transition is fitted using eq. (47) which is

z

aBN
=

(
1 +

F

ẼB

− 1
2αB

)
ϕB + γ

(
1 − 1

2αS

)
ϕS

+
〈σiσi+1〉 − 1

4

(
1

2αB

κB − κBS

κBS + F/2 + αB

+
γ

2αS

κS − κBS

κBS + γF/2 + αS

)
, (B.1)

where

αB,S =

√

κB,SF +
(

F

2

)2

, (B.2)

ϕB,S =
1
2

(
1 ± sinh μ0√

sinh2 μ0 + e−4J0

)
, (B.3)

1 − 〈σiσi+1〉 =
e−4J0

√
sinh2 L0 + e−4J0(cosh L0 +

√
sinh2 L0 + e−4J0)

,

(B.4)

and the effective Ising parameters are

μ0 = μ − ln γ + F
1 − γ

2
+

1
2

ln
(

κS + Fγ/2 + αS

κB + F/2 + αB

)
,

(B.5)

J0 = J +
1
4

ln
[
(κSB + F/2 + αB)(κSB + Fγ/2 + αS)
(κB + F/2 + αB)(κS + Fγ/2 + αS)

]
.

(B.6)

Since NaB , γ, κB , κS and ẼB are known thanks to steps
i)-iii), this last step yields the values of the parameters μ
and J , thus fixing the position (defined by μ0 = 0) and
the width of the transition respectively. We have checked
that choosing κS = κBS does not change significantly the
results.
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