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Abstract. We consider the hydrodynamic theory of an active fluid of self-propelled particles with nematic
aligning interactions. This class of materials has polar symmetry at the microscopic level, but forms
macrostates of nematic symmetry. We highlight three key features of the dynamics. First, as in polar
active fluids, the control parameter for the order-disorder transition, namely the density, is dynamically
convected by the order parameter via active currents. The resulting dynamical self-regulation of the order
parameter is a generic property of active fluids and destabilizes the uniform nematic state near the mean-
field transition. Secondly, curvature-driven currents render the system unstable deep in the nematic state,
as found previously. Finally, and unique to self-propelled nematics, nematic order induces local polar order
that in turn leads to the growth of density fluctuations. We propose this as a possible mechanism for the
smectic order of polar clusters seen in numerical simulations.

1 Introduction

Active materials are soft materials driven out of equilib-
rium by energy input at the microscale. This liberates the
fluctuations from the constraints of equilibrium such as
fluctuation-dissipation relations and reciprocity. As a con-
sequence, several exotic emergent behaviors result, such as
long-range order in 2D [1,2], anomalous fluctuations [3,4],
dynamical structures and patterns [5–8]. In addition to
serving as prototypical systems to explore emergent dy-
namical behavior, active materials also form the physi-
cal scaffold of biological systems in that active matter,
when coupled to regulatory signaling pathways, provides
a model for a variety of living systems, such as bacterial
biofilms or the cytoskeleton of a cell.

Active particles are generally elongated and form ori-
entationally ordered states [9]. The nature of the ordered
state depends on both the symmetry of the individual
particles and the symmetry of the aligning interactions
(see fig. 1). Physical realizations of polar active particles
(with distinct head and tail) include bacteria, asymmet-
ric vibrated granular rods, and polarized migrating cells.
Polar active entities are often modeled as self-propelled
(SP) particles, where the activity is incorporated via a
self-propulsion velocity of the individual entities. Apolar
(head-tail symmetric) active particles, often referred to as
“shakers”, have also been considered in the literature. Re-
alizations are symmetric vibrated rods [4]. It has also been
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argued that melanocytes, the cell that distribute pigments
in our skins, may effectively behave as “shakers” [10,11].

The nature of the interaction is of course crucial in
controlling the properties of the ordered state. SP and po-
lar particles may experience either polar interactions, i.e.,
ones that tend to align particles head to head and tail to
tail, or interactions that are apolar, i.e., align particles re-
gardless of their polarity. Well studied examples of polar
particles with polar interactions are provided by Vicsek-
type models [12,13]. This class of active systems, referred
to below as active polar fluids, can order in polar states,
characterized by a nonzero vector order parameter and
mean motion. Apolar active particles (shakers) generally
experience apolar interactions and the resulting ordered
state has the symmetry of equilibrium nematic liquid crys-
tals. The broken orientational symmetry identifies a di-
rection n̂, but the ordered state is invariant for n̂ → −n̂.
These system will be called active nematic fluids in the
following. Their properties have been studied by several
authors [3, 14]. One can envisage another class of active
fluids with nematic symmetry at large scales that consists
of SP particles (hence units that are polar at the micro
scale) with apolar aligning interactions. A realization of
this is self-propelled particles with physical interactions,
such as steric repulsion or hydrodynamic couplings among
swimmers in a bulk suspension. It has been shown that
these interactions lead to large-scale nematic, rather than
polar order [15, 16]. What is key is the fact that binary
interactions such as steric collisions or hydrodynamic cou-
plings individually conserve momentum and hence cannot
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Fig. 1. Top: active particles of various microscopic symmetry:
(a) Polar active particles with head/tail asymmetry resulting
in polar interactions, as studied in [12, 13]. (b) Apolar active
particles, as studied in [3,14]. (c) Self-propelled particles, with
physical head-tail symmetry, resulting in apolar interactions.
Bottom: ordered macroscopic states of active particles: polar
active fluid (left) formed by polar particles (a) with polar inter-
actions; active nematic fluid (center) formed by apolar parti-
cles (b) with apolar interactions; self-propelled active nematic
fluid (right) formed by self-propelled particles (c) with apolar
interactions.

lead to the development of a macroscopic momentum for
the system. Since the ordered state of these systems has
nematic symmetry, the reader may wonder why we feel the
need to group these active fluids in a separate (third) class.
The reason is that, as we will see below, the properties of
active nematic of SP particles are distinct from those of
active nematics composed of apolar particles. We will refer
to this third class of active systems as self-propelled ne-
matic fluids. Further, it has recently become apparent that
models of polar particles with apolar interactions may be
relevant to a number of physical systems, including glid-
ing myxobacteria [17], suspensions of auto-catalytic Janus
colloids [18] and motile epithelial cell sheets such as those
studied in wound healing assays [19,20]. Self-propelled ne-
matics therefore represent an important new class of active
systems of direct experimental relevance.

A useful theoretical framework for describing the col-
lective behavior of active systems is a continuum model
that generalizes liquid crystal hydrodynamics to include
new terms induced by activity [14, 21–29]. In this paper,
we discuss the hydrodynamics of active fluids of nematic
symmetry, contrasting the behavior of fluids composed of
shakers and of self-propelled particles. We consider min-
imal continuum models based on the equations derived
earlier by us from specific microscopic models [15,30], but
in contrast to our previous work, here we introduce the
models phenomenologically on pure symmetry grounds.
We also use the present paper to clarify some apparent
discrepancies between our earlier publications. In our pre-
vious work we considered collections of repulsive hard rods
self-propelled at speed v0 along their long axis, and dis-
cussed two different ways of implementing the steric in-

teractions. In ref. [30] we described the hard rod interac-
tion within the Onsager mean-field model of excluded vol-
ume, neglecting any modification that self-propulsion may
induce to the hard rod collision. In contrast, in ref. [15]
we analyzed in details the collision of two self-propelled
hard rods and showed that self-propulsion enhances lon-
gitudinal momentum transfer and yields new nonequilib-
rium terms in the continuum equations not obtained in the
mean-field Onsager model. We show here that the equa-
tions obtained in ref. [30] can be recast in the form of
the equations used in the literature [3] to describe collec-
tions of shakers. The large-scale dynamics of this system
that we call active nematic, like that of its equilibrium
counterpart, can therefore be described solely in terms of
density and alignment tensor, albeit with active currents
not present in the equilibrium equations. In contrast, the
description of the dynamics of self-propelled nematics re-
quires the inclusion of an additional collective velocity or
polarization field. Further, we show that all active flu-
ids with large-scale nematic symmetry (both consisting
of shakers and SP particles) exhibit the phenomenon of
dynamical self regulation [31], due to the fact that the pa-
rameter controlling the order-disorder transition, namely
the density ρ of active particles, is not externally tuned, as
in systems undergoing equilibrium phase transitions, but
it is dynamically coupled to the order parameter. This cou-
pling is analogous to the one present in polar fluids [1,2,32]
and is a generic mechanism for emergent structure in all
active systems, as demonstrated in our recent work [31].

The layout of the paper is as follows. First, we con-
struct the hydrodynamic description of active fluids with
nematic symmetry, highlighting the difference between
self-propelled particles with an equilibrium-like aligning
interaction, unmodified by self-propulsion (such as the On-
sager excluded-volume description of the steric repulsion
of two hard rods), and the case where the binary collision
is modified by self-propulsion. In the former case the sys-
tem is equivalent at large scales to an active nematic of
shakers, while the second case corresponds to a new class
of self-propelled nematic fluids. Next we examine the lin-
ear stability of the homogeneous nematic state. We show
that there exists three dynamical mechanisms responsible
for emergent structures in active fluids with nematic sym-
metry. The first is a model-independent instability that
occurs in the vicinity of the mean field order disorder
transition due to the coupling between order parameter
and mass transport which renders the dynamics of the
system self-regulating. We argue that this instability is
the basis for the emergence of bands and phase separa-
tion found ubiquitously active systems [33–35]. The sec-
ond is the well known instability of director fluctuations
that arises from nonequilibrium curvature-induced fluxes
and is closely related to the giant number fluctuations
observed in these systems [3, 14]. These two instabilities
are common to both active nematics and self-propelled
nematics, i.e., occur regardless of the symmetry of the
microdynamics. Finally, we show that there exists a third
instability unique to self-propelled nematic fluids due to
the fact that in these systems, large scale nematic order
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can induce local polar order, which in turn destabilizes the
density. This mechanism may be responsible for the smec-
tic order of polar clusters observed recently in simulations
of SP rods [34,36]. We conclude with a brief discussion.

2 The macroscopic theory

The hydrodynamic equations of a self-propelled nematic
have been derived from systematic coarse-graining of spe-
cific microscopic models [15, 16, 30]. Here we introduce
these equations phenomenologically, with the goal of ex-
amining the dynamics without the limitations imposed by
the specific parameter values obtained from a microscopic
model or resulting from the choice of the closure used in
the kinetic equation.

We limit ourselves to overdamped systems in two di-
mensions. The hydrodynamic equations are then written
in terms of three continuum fields: the conserved num-
ber density ρ(r, t) of active units, the polarization den-
sity τ (r, t) = ρ(r, t)P(r, t), with P(r, t) a polarization or-
der parameter, and the nematic alignment density tensor
Qij(r, t) = ρ(r, t)Sij(r, t). The polarization P is directly
proportional to the collective velocity of the active parti-
cles, while Sij is the conventional nematic order parameter
tensor familiar from liquid crystal physics. For a uniaxial
system in two dimensions, Qij is a symmetric traceless
tensor with only two independent components and can be
written in terms of a unit vector n̂ as Qij = Q(n̂in̂j− 1

2δij),
where Q = ρS; S is the magnitude of the order parameter
and the director n̂ identifies the direction of spontaneously
broken symmetry in the nematic state. For simplicity most
of the discussion below refers to the case where the active
particles are modeled as long thin rods with repulsive in-
teractions.

2.1 Active nematic hydrodynamics

We first discuss the hydrodynamic equations of a collec-
tion of nematic rods self-propelled along their long axis ob-
tained, as in ref. [30], by incorporating the advective terms
due to self-propulsion, but assuming that self-propulsion
does not modify the hard rod interactions. This model
corresponds for instance to the one studied numerically
in [33]. The hydrodynamic equations for this system can
be written in two different forms corresponding in a micro-
scopic model to different closures of the kinetic equation.
These two forms can be shown to be equivalent at long
times. First, one could write a set of coupled equations
for density, polarization and alignment tensor, given by

∂tρ + v0∇ · τ = D∇2ρ, (1a)

∂tτ + Drτ + v0∇ · Q +
v0

2
∇ρ = Dτ∇2τ , (1b)

∂tQij − Dr [α (ρ) − βQ : Q] Qij +
v0

4
Fij = Db∇2Qij

+Ds∂k (∂iQkj + ∂jQik − δij∂lQkl) , (1c)

where Q : Q = QklQkl, Dr is the rotational diffusion
rate and Fij = (∂iτj + ∂jτi − δij∇ · τ). All terms propor-
tional to v0 arise from one-particle convection due to self-
propulsion and are the only consequence of activity in this
simple model that assumes equilibrium-like interactions.
The repulsive interactions among the particles generate
the cubic homogeneous term (with β > 0) on the right
hand side of eq. (1c) and a change in sign of α(ρ) ∼ ρ−ρc

at a critical density ρc, controlling the transition between
the isotropic and the nematic states1. Interactions also
give density-dependent corrections to the various diffusion
coefficients for density (D), polarization (Dτ ), splay (Ds)
and bend (Db) deformations of the nematic alignment ten-
sor. We will ignore all such corrections in the following2.
Finally, for simplicity here and below, unlike what done
in refs. [15, 30], we have assumed equal splay and bend
elastic constants in the polarization equation.

Since in this system the interactions are purely ne-
matic and identical to those of an equilibrium system, the
polarization decays on short time scales of order D−1

r for
all strengths of self-propulsion speed. One can therefore
neglect ∂tτ in eq. (1b) relative to Drτ and eliminate the
polarization τ in favor of density and alignment tensor,
with the result

∂tρ = D∇2ρ + DQ∇∇ : Q , (2a)

∂tQij−Dr [α (ρ) − βQ : Q] Qij = Db∇2Qij

+ Ds∂k (∂iQkj + ∂jQik − δij∂lQkl)

+ Dρ

(
∂i∂j −

1
2
δij∇2

)
ρ . (2b)

The active currents proportional to DQ and Dρ are unique
to non-equilibrium systems (with DQ,D ∼ v2

0 in the
present model) and vanish in equilibrium. The reader may
be confused by the fact that ref. [30] reported coupled
equations for density, alignment tensor and polarization,
and yet included the active currents absent in eqs. (1).
The reason for this discrepancy is that ref. [30] used a
specific low density approximation that does give a finite
value for the coefficients of these nonequilibrium currents.
These currents would, however, vanish if their coefficients
were to be calculated exactly to all order in the density3,
showing that active modifications of nematic interactions
(such as excluded volume) are needed to yield nonzero
values of DQ and Dρ.

The term proportional to DQ is the curvature-induced
density flux that has been discussed extensively by Ra-

1 Note that the cubic term was not derived in ref. [30], but
is easily obtained, including its sign, by a higher order closure
of the moment expansion of the kinetic equation.

2 Retaining the density dependence of the diffusion coef-
ficients results in interesting emergent structures as shown
by [37]. Since we seek to focus on fundamental features that
do not depend on the detailed structure of the hydrodynamic
coefficients, we ignore this physically important feature.

3 A hint to this is obtained by looking at the excluded-volume
corrections given in the appendix of ref. [30].
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maswamy and collaborators [3] and shown to be respon-
sible for giant number fluctuations in the ordered state of
active nematic. The diffusive coupling proportional to Dρ

describes similar physics but has not been considered in
earlier description of active nematic fluids. In addition, ac-
tivity also yields corrections to the various diffusion coef-
ficients. We have, however, implicitly neglected those here
by retaining the same notation for these quantities as in
eqs. (1a)-(1c) to highlight the difference between these cor-
rections that do not change the dynamics qualitatively and
the new terms proportional to DQ and Dρ. Although ob-
tained here by considering a system of self-propelled par-
ticles, eqs. (2a) and (2b) have the same structure as the
hydrodynamic equations of an active nematic, consisting
of a collection of apolar active particles (shakers) with ap-
olar interactions. This is an important point as it stresses
that the qualitative differences between active and self-
propelled nematic that have been observed in simulations
must arise entirely from the dependence of the interaction
on self-propulsion v0.

2.2 Momentum-conserving interaction of self-propelled
nematogens

As shown in ref. [15] and supported by simulations of
self-propelled hard rods [34–36, 38], self-propulsion does
modify the repulsive interaction in a qualitative way. This
modification results in local build-up of polarization in the
nematic state, making it necessary to retain the dynam-
ics of polarization density in the continuum model. The
modification of the Onsager excluded-volume interactions
among hard rods due to self-propulsion is worked out in
ref. [39]. Here we simply give a qualitative description of
this effect and we refer the reader to that work for the
technical details. First we note that the presence of a self-
propulsion speed along the long axis of the nematogen,
results in a breaking of the nematic symmetry of the mi-
crodynamics, as shown in fig. 1. On the other hand, since
the interactions conserve momentum, this cannot lead to
a macroscopic breaking of polar symmetry as this would
amount to the appearance of a spontaneous macroscopic
momentum from a zero momentum state. Hence, only a
homogeneous ordered nematic state can occur and the as-
sociated mean field transition will be the same as in the
case of the active nematic considered above, albeit with
coefficients α and β renormalized by self-propulsion [15].
Even though the polar symmetry cannot be broken macro-
scopically, momentum conservation allows the nematic or-
dering to induce local polar order in the system. To il-
lustrate this, let us consider hard rods in two dimensions
undergoing energy-momentum conserving interactions. As
shown in fig. 2, the angular momentum transfer due to the
linear momentum from self-propulsion for a collision be-
tween two rods scales as ω ∼ cos(θ1−θ2) sin(θ1−θ2). If the
rods are nearly aligned head to head (as in fig. 2a), the ef-
fect of this angular momentum is to turn the rods towards
each other, while if they are nearly aligned head to tail as
in fig. 2b, the collision turns both rods in the same direc-
tion, leaving their relative angle unchanged. This mech-

Fig. 2. Qualitative illustration of momentum-conserving col-
lisions among self-propelled particles. It can readily be shown
that two rods as shown in (a), coming in with only their self-
replenishing velocities, will acquire opposite angular momenta
ω1 ∼ ẑ�v0[ẑ · (û1 × û2)] and ω2 ∼ −ẑ�v0(û1 · û2)[ẑ · (û1 × û2)],
where the vectors are defined in the image and in [39]. The
collision will therefore induce rotations as indicated, promot-
ing alignment of the two rods. On the other hand, two nearly
anti-aligned rods as in (b) acquire angular momenta of the
same sign, inducing rotation of both rods in the same direc-
tions, and leaving their relative angle nearly unchanged.

anism effectively promotes head-to-head alignment. Since
collisions among such nearly aligned nematogens will dom-
inate the dynamics in the nematic state, the nematic order
effectively induces polar order.

2.3 Self-propelled nematic hydrodynamics

The fact that interactions among self-propelled nemato-
gens tend to induce polar order is reflected in the hydro-
dynamic description by a number of new nonlinear terms
that couple τ and Q, with coefficients that vanish in the
limit v0 = 0. The continuum equations for a self-propelled
nematic that incorporate the above physics are given by

∂tρ + v0∇ · τ = D∇2ρ + DQ∇∇ : Q, (3a)

∂tτ + Drτ + γ1Q : Qτ − γ2τ · Q + λ1τ · ∇τ =

−v0∇ · Q− v0

2
∇ρ+λ2τ∇ · τ +

λ3

2
∇τ2+Dτ∇2τ , (3b)

∂tQij − Dr(α − βQ : Q)Qij +
v0

4
Fij + λ4Gij =

Ds∂k (∂iQkj + ∂jQik − δij∂lQkl)

+Dρ

(
∂i∂j −

δij

2
∇2

)
ρ + Db∇2Qij , (3c)

where Gij = Qik∂kPj+Qjk∂kPi−δijQkl∂kPl and again we
have implicitly neglected active corrections to D, Dτ , Ds

and Db to highlight the new, purely active terms. Equa-
tions (3) are of the form given in ref. [15] (but note that
in [15] we had omitted the O(∇2) splay and bend terms in
the equation for the alignment tensor), with one important
exception: the term proportional to γ1 was not obtained in
our earlier work where a closure that only retained terms
up to quadratic in the continuum fields was used to derive
the hydrodynamic equations. This cubic term is, however,
allowed by symmetry and does indeed arise from the mi-
croscopic model discussed in [15] if a higher order closure
of the kinetic equation is used to derive hydrodynamics. As
shown below, it has important consequences for pattern
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formation as it drives the built-up of local polar order.
Activity enters in eqs. (3) through the convective terms
proportional to v0, the new terms with coefficients γi and
λi, which vanish in equilibrium, as well as the terms pro-
portional to DQ and Dρ that arise here from active cor-
rections to interactions. Finally, the parameters α and β
controlling the mean field isotropic-nematic transition are
also renormalized by activity. The homogeneous nonlin-
earities proportional to γi in the polarization equation en-
code the fact that nematic order induces polar order. The
latter is, however, only local as the equations do not admit
a homogeneous solution with nonzero τ . Further, the ac-
tive modification of the interactions, yield the convective
nonlinearities ∼ O(τ∇τ ) that play a central role in the
emergent physics of active polar fluids.

Since the goal of this presentation is to highlight the
mechanisms responsible for emergent structures, we sim-
plify the equations by setting all of the equilibrium-like
diffusion coefficients to be equal, i.e., D = Dτ = Db = D0,
with the exception of the splay relaxation constants Ds.
In addition, we assume λi = λ for all i’s and γ1 = γ2 = γ
(in their nondimensional forms). Finally, we measure time
in units of 1/Dr and lengths in units of

√
D0/Dr. The hy-

drodynamic equations then simplify to (in nondimensional
form)

∂tρ + v∇ · τ = ∇2ρ + DQ∇∇ : Q, (4a)

∂tτ + (1 + γQ : Q) τ − γτ · Q + λτ · ∇τ =

−v∇ · Q − v

2
∇ρ + λ

(
τ∇ · τ +

1
2
∇τ2

)
+ ∇2τ , (4b)

∂tQij − (α − βQ : Q) Qij + vFij + λGij =

Dρ

(
∂i∂j −

1
2
δij∇2

)
ρ

+Ds∂k (∂iQkj + ∂jQik − δij∂lQkl) + Db∇2Qij , (4c)

with DQ = DQ/D0, Dρ = Dρ/D0 and Ds,b = Ds,b/D0.
Finally, we assume α = ρ

ρc
− 1 and β independent of ρ.

The effect of activity is assumed to affect the mean field
phase transition only through the dependence of the crit-
ical density ρc on the magnitude of self-propulsion speed.
In this simplified form, the dynamics of the system is char-
acterized by two central parameters: the mean density
ρ0 of active nematogens and the self-propulsion velocity
v = v0/

√
DrD0, which is effectively the Peclet number for

this flow. The other parameters γ, λ, DQ, Dρ and Ds are
in general functions of ρ0 and v, although we will treat
them here as independent parameters and simply fix their
values.

3 Linear dynamics and emergent structures

The dynamics of self-propelled rod-like particles with
steric repulsion has been studied extensively by numerical
simulation of microscopic models [34, 36, 38]. This work
has revealed a rich variety of emergent structures, includ-
ing bands of high density regions where the particles are

ordered along the direction of the band, lane formation,
migrating defect structures and low Reynolds number tur-
bulence. Here we examine the minimal continuum model
of self-propelled nematic given by eqs. (4) to identify the
generic dynamical mechanisms responsible for the emer-
gence of these structures. As mentioned above, there are
three important mechanisms for dynamical instabilities
and pattern formation in these systems. To unfold the role
of each of these mechanisms in controlling the large-scale
dynamics of the system, we analyze the linear stability
of the ordered nematic state in various special cases that
best highlight a particular mechanism.

The ordered nematic state has constant density ρ0,
zero mean polarization density, τ0 = 0, and a finite value
for the nematic alignment tensor. Choosing a coordinate
system with the x axis pointing along the direction of bro-
ken nematic symmetry, the alignment tensor in the uni-
form nematic state has components Q0

xx = −Q0
yy = Q0/2

and Q0
xy = Q0

yx = 0, with Q0 =
√

α0/β and α0 = α(ρ0).
We now examine the linear stability of this state in vari-
ous regions of parameters by considering the dynamics of
small fluctuations, δρ(r, t) = ρ(r, t)−ρ0, δτ (r, t) = τ (r, t)
and δQij(r, t) = Qij(r, t) − Q0

ij . We will generally work
in Fourier space by introducing Fourier transforms of the
fluctuations as φα

k(t) =
∫
r
eik·rδφα(r, t), where δφα =

(δρ, τ , δQij).

3.1 Dynamical self-regulation and banding instability

We first consider the linear dynamics of the system in the
region just above the mean-field transition at ρc. For sim-
plicity we only discuss spatial variations normal to the
direction of broken symmetry, as these correspond to the
most unstable modes, i.e., let k = kŷ. Fluctuations in
τx and δQxy then decouple and are always stable. The
dynamics of fluctuations in δρ, τy and δQyy is governed
by three coupled equations. Fluctuations in τy are always
quickly damped near the mean-field transition, while the
decay rate of δQyy, controlled to leading order by α0, van-
ishes as ρ0 → ρ+

c . We therefore neglect fluctuations in
τy and simply examine the coupled dynamics of δρ and
δQ ≡ δQyy, given by

∂tδρk = −k2δρk − DQk2δQk, (5a)

∂tδQk = −
[α0

2
+ (1 + Ds)k2

]
δQk

− 1
2
(α′Q0 + Dρk

2)δρk, (5b)

where α′ = (∂α
∂ρ )ρ=ρ0 , or α′ = 1/ρc with the chosen param-

eters. The decay of density and ordered parameter fluctu-
ations is then controlled by two coupled hydrodynamic
modes. One of the modes has a finite decay rate (pro-
portional to α0) in the limit k → 0 and is always stable.
At small wave vector, the dispersion relation of the other
mode is given by

sy(k) = −s2k
2 − s4k

4 + O(k6), (6)
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Fig. 3. The banding instability that occurs due to the self-
regulating nature of the flow. The dashed vertical line indi-
cates the mean-field order-disorder transition at ρ0 = ρc. The
solid line (blue online) is the boundary of the instability, corre-
sponding to s2 = 0 (see eq. (6)), or DQ = DQ/D0 =

√
α0β/α′.

The plot is for α0 = ρ0/ρc − 1, α′ = 1/ρc and β = 1 + ρ/ρc,
with the choice ρc = 1. The uniform ordered state is unstable
in the striped region.

with s2 = 1 − DQα′
√

α0β
and s4 > 0. Near the transition

where α0 → 0, s2 < 0 and s4 � 2D
2
Qα

′2

α2
0β

. As a result,
sy(k) > 0 for a range of wave vectors, resulting in the
unstable growth of density and order parameter fluctua-
tions illustrated in fig. 3. The fastest growing mode has
wave vector k0 =

√
−s2/2s4 ∼ (ρ0 − ρc)3/2. Including the

coupling to τy will yield finite Peclet number corrections
to the instability. Note that this instability is strongest
in the vicinity of the order-disorder transition and is a
manifestation of the fact that the dynamics of the system
is self-regulating, i.e., the control parameter associated
with the phase transition, namely the density is dynami-
cally coupled to the emergent ordering that results from
the transition through the curvature-induced fluxes. This
is the dynamics that leads the system to be intrinsically
phase separated [3].

We recall that polar active fluids exhibit a similar in-
stability for wave vectors parallel to the direction of mean
order. In that case the mode that goes unstable is a prop-
agating mode and the instability signals the onset of soli-
tary waves consisting of alternating ordered and disor-
dered bands extending in the direction normal to that
of mean order and traveling along the direction of broken
symmetry. These bands have been observed in simulations
of the Vicsek model [13, 40], as well as in numerical solu-
tions of the nonlinear hydrodynamic equations for polar
fluids [41–43]. We have shown here that active nematics
exhibit a similar instability, controlled by the interplay of
curvature currents (DQ) and the self-regulation due to the
density dependence of α. The instability occurs even for
v = 0, i.e., is present in both active and self-propelled
nematics. It occurs for wave vectors perpendicular to the
direction of broken nematic symmetry and the mode that
goes unstable is a diffusive one. It is therefore tempting
to associate it with the emergence of the stationary bands
consisting of alternating ordered (nematic) and disorders

regions that have been seen in simulations of active sys-
tems with apolar interactions [33] and physical excluded-
volume interactions [34,36]. Finally, but most importantly,
this instability mechanism is generic, in the sense that it
does not depend on microscopic parameters, but only on
the presence of a dynamical feedback between density and
active currents.

3.2 Curvature-induced flux

Next we consider the region of small v, λ and γ, deep
in the nematic phase. In this case, the long-wavelength
dynamics is controlled by hydrodynamic modes associated
with fluctuations in the density and the director n̂. This
case has been considered in the literature already and is
summarized here for completeness [3,30,44]. For our choice
of coordinates to linear order we have δQxx = −δQyy = 0
and δQxy = δQyx = Q0δn̂(r, t). Neglecting polarization
fluctuations that decay on microscopic time scales, the
linearized equations are given by

∂tδρk = −k2δρk − Q0Dk2 sin 2θδn̂k , (7a)

∂tδn̂k = −Dρk
2

2Q0
sin 2θδρk +

[
Ds + cos 2θ

]
k2δn̂k , (7b)

where θ is the angle between k and the direction of broken
symmetry (x). If θ = 0, π, the two equations are decou-
pled and the modes are diffusive and stable. For general
θ one of the hydrodynamic modes becomes unstable for
DDρ sin2 2θ > 2(Ds + cos 2θ). This can be satisfied pro-
vided DQDρ > 2Ds, i.e., the curvature-driven fluxes ex-
ceed the restoring effects of diffusion. This instability has
been discussed in detail elsewhere [30].

3.3 Induced polar order

Finally, we examine the effect of fluctuations with spatial
variations along the direction of broken symmetry, i.e.,
k = kx̂. The relevant coupled fluctuations in this case are
δρ, τx and δQxx. For simplicity, we consider the regime of
large Peclet number v, where the linear dynamics is con-
trolled by Euler order terms and neglect terms quadratic
in the gradients, with the result

∂tδρk + ikvτx,k = 0, (8)

∂tτx,k + γeτx,k = −ikvδQxx,k − ik
v

2
δρk, (9)

∂tδQxx,k − α0

2
δQxx,k = ik

(
v +

λ

2
Q0

)
τx,k +

α′

2
Q0δρk,

(10)

where γe = 1+ γ
2 Q2

0− γ
2 Q0. As discussed earlier and high-

lighted in fig. 2, the anisotropy of small angle collisions in
the nematic state enhances polar order by suppressing the
decay rate of τx,k from its bare value of 1 (in units of D−1

r )
to γe. The dispersion relations of the hydrodynamic modes
associated with eqs. (6) are easily calculated at small wave
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vectors. The diffusive mode associated with the density
fluctuations (the only hydrodynamic mode proper here)
is given by

sx(k) = −k2 v2

2γe

(
1 +

2α′
√

α0β

)
(11)

and becomes unstable when γe ≤ 0. It is also evident that
if γe ≤ 0 the polarization fluctuations no longer decay. In
general γe depends on microscopic details of the model,
but there is no reason to exclude a priori that it could
change sign and indeed does for the case of long thin hard
rods with excluded-volume interactions [30]. The linear
analysis here is of limited utility because of the existence
of a homogeneous instability but it is shown to indicate
that the build up of polarization due to the momentum-
conserving nature of the interactions has a dramatic conse-
quence on the dynamics of the system. We stress that the
instability discussed in this section is associated with the
polarization, not with the nematic order parameter. Simu-
lations of self-propelled hard rods have seen ubiquitously
traveling clusters of aligned rods [34, 35] that also seem
to exhibit a layered or smectic structure within the clus-
ter [34, 36]. Given our calculation indicates an instability
of polar order in the longitudinal direction, it is tempting
to speculate that this instability may be the indication of
the formation of the smectic layers seen in simulations.

Finally, we stress that the nonlinear homogeneous
terms proportional to γ and responsible for the renormal-
ization of γe always vanish in an equilibrium state because
the nematic symmetry of such a state by definition forbids
a nonzero uniform value of the mean polarization.

4 Discussion

We have considered in this paper the hydrodynamics
of active overdamped fluids that can order in nematic
states. These are collections of active particles that in-
teract via apolar (nematic) aligning interactions, such as
steric repulsion or medium-mediated hydrodynamic cou-
plings. One can identify two classes of such fluids, depend-
ing on the properties of the individual active units. Ac-
tive nematics consist of shaker particles that are them-
selves apolar. Self-propelled nematics are collections of
particles that are physically head-tail symmetric (such as
SP rods), but where a microscopic dynamical polarity is
induced by self-propulsion. Although both systems form
ordered states of nematic symmetry, their dynamical be-
havior is qualitatively different, as seen in recent simula-
tions [34,35,38].

The hydrodynamic equations of active nematics have
the form given in eqs. (2). We have shown that the same
equations are also obtained by considering SP particles
and neglecting the effect of self-propulsion on the interac-
tion between active units, suggesting that the active ne-
matic may be considered the zero Peclet number v limit of
self-propelled nematic. In this case the only active term is
the curvature current proportional to DQ in eq. (2a). This
nonequilibrium coupling of orientation and flow induces

instabilities of the ordered state that have been studied
before in the literature [3, 14, 30] and are also summa-
rized in sect. 3.2. The curvature current is also key in
controlling the banding instability arising from dynami-
cal self-regulation discussed in sect. 3.1. In fact this in-
stability, although not discussed before in the literature
for overdamped active nematic, occurs in all active fluids
of nematic symmetry, both for shakers and self-propelled
particles. It arises from the density dependence of the pa-
rameter α(ρ) that controls the mean-field transition and
the fact that in active systems ρ is not tuned from the out-
side, as in equilibrium, but is itself a dynamical variable
convected by the order parameter.

The hydrodynamic equations of self-propelled nemat-
ics given in eqs. (3) (or eqs. (4) in the dimensionless form
studied here) contain many new active terms that arise
from modifications of the two-body interaction due to
self-propulsion. These equations have also been derived by
us for a specific microscopic model of self-propelled hard
rods [15,39], although the low order closure of the kinetic
theory used in that work only gives terms up to quadratic
in the hydrodynamic fields. Self-propelled nematics also
exhibit both the curvature-induced instability discussed in
sect. 3.2 and the banding instability discussed in sect. 3.1.
Both are of course modified at finite Peclet number due
to additional convective contributions to the underlying
mechanisms the details of which will be discussed else-
where. In addition, self-propulsion yields a novel insta-
bility due to the built-up of local polar order discussed in
sect. 3.3. This arises because in the nematic state most bi-
nary collisions involve nematogens that are nearly aligned
or anti aligned, as shown in fig. 2. When the nematogens
are self-propelled, collisions of nearly aligned and nearly
anti-aligned pairs are not identical. Nearly aligned pairs
tend to further align upon collisions, while nearly anti-
aligned pairs are turned away from each other. As a re-
sult, local polar order is enhanced and the nematic state
becomes unstable as discussed in sect. 3.3. It is tempting
to associate this instability with the onset of “polar clus-
ters” that have been observed ubiquitously in simulations
of self-propelled rods [34,35,38], as well as in experiments
in gliding myxobacteria [17].
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