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Abstract. We discuss how spreading processes on temporal networks are impacted by the shape of their
inter-event time distributions. Through simple mathematical arguments and toy examples, we find that
the key factor is the ordering in which events take place, a property that tends to be affected by the bulk of
the distributions and not only by their tail, as usually considered in the literature. We show that a detailed
modeling of the temporal patterns observed in complex networks can change dramatically the properties
of a spreading process, such as the ergodicity of a random walk process or the persistence of an epidemic.

1 Introduction

When modeling diffusive processes in systems made of in-
teracting elements [1], a majority of works has adopted a
Poisson viewpoint, where stochastic events take place at a
constant rate. For instance, in models of disease spreading
over contact networks [2], it is usually assumed that the
probabilities per unit time of disease transmission and of
recovery from disease are constant, implying exponential
distributions of the time intervals between events. This
assumption has important consequences on the mathe-
matical nature of the models, as they become memoryless
and they conveniently reduce to ordinary differential equa-
tion models. In situations when only the average rate of
the events is known, this approach is statistically justified
by the principle of maximum entropy [3]. However, grow-
ing evidence shows that inter-event time statistics signifi-
cantly deviates from Poisson processes in a variety of sys-
tems [4], with important consequences on the dynamical
and asymptotic properties of spreading models [5–9]. For
instance, the distribution of duration of most diseases has
a sharp peak about the average value and is highly non-
exponential [10,11]. Similarly, times between contacts [12]
or communication [13,14] between individuals also tend to
deviate from a Poisson process, but this time by exhibit-
ing a bursty behaviour, namely an intermittent switching
between periods of low activity and high activity, and a
fat-tailed inter-event time distributions [15].

Incorporating non-exponential distributions into a
mathematical modeling of diffusion leads to integro-
differential equations [16–18], where the evolution of the
system at some time depends on an integration of its
states over its past, i.e. the random process becomes non-
Markovian. An important aspect of these equations is that
they account for the importance of the time ordering of
events on dynamics. Typically, for one event to take place,
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some other event should not have taken place before. In
the case of disease spreading, for instance, an infected in-
dividual can only transmit the disease at a certain time if
is has not recovered at that time. The main purpose of this
article is to investigate the properties of inter-event time
distributions that affect spreading. In particular, we will
emphasize the importance of time ordering for two differ-
ent types of diffusive processes, namely random walks and
epidemic spreading.

2 Diffusion and time ordering

2.1 From data to models

In a majority of empirical systems, networks are not static
entities, as edges and nodes can appear and disappear in
time. A natural framework to study time-dependent com-
plex systems is to use temporal networks [19], in which
one accounts for the timings of interactions instead of as-
suming static connectivity. The modeling of temporal net-
works requires one finding the right level of abstraction,
which allows for a mathematical analysis while preserving
key properties of the data. In that direction, a promising
approach consists in building stochastically evolving net-
works where the appearance of edges between nodes is a
stochastic process, built such as to preserve the inter-event
time distribution observed in the data.

In practice, stochastic models are constructed as fol-
lows. Let us consider an empirical system observed during
a time interval T , made of N nodes, and where edges
between two nodes, say from i to j, appear at times
tij = {t(1)ij , t

(2)
ij , . . . , t

(nij)
ij }, where nij is the total num-

ber of activations of that edge. The sequence is ordered
such that t(a)

ij < t
(b)
ij if a < b. For the sake of simplicity,

we will further assume that edges remain present for in-
finitesimally small times, in order to avoid several edges
to be present at the same time. The modeling step con-
sists in replacing the exact sequence of activation times
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by a random sequence where events take place according
to an inter-activation time fij(τ) fitted on the data. More
precisely, fij(τ)dτ is the probability to observe a time in-
terval of duration in [τ, τ + dτ ] between two activations of
the edge. By convention, fij(τ) is only defined for edges
that are activated at least once. For those, fij(τ) verifies∫ ∞

0

fij(τ)dτ = 1, (1)

and ∫ ∞

0

τfij(τ)dτ = 〈τ〉ij (2)

gives the expected time between two activations of an
edge.

When modeling the diffusion of an entity on the net-
work, however, the distribution fij(τ) only plays an indi-
rect role. The important quantity is instead the waiting
time distribution ψij(t) that the entity arriving on i has
to wait for a duration t before an edge towards j is avail-
able. The waiting time t is often called relay time. In epi-
demic spreading, it is the time it takes for a newly infected
node to spread the infection further via the correspond-
ing link. Assuming that the activations of neighbouring
edges are independent1 and that nodes become infected at
uniformly random times, inter-activation time distribution
and waiting time distribution verify the relation [20,21]

ψij(t) =
1

〈τ〉ij

∫ ∞

t

fij(τ)dτ (3)

derived as follows. The probability for the walker to arrive
in an inter-activation time of duration τ is proportional
to τ , more precisely τfij(τ)

〈τ〉ij
. The probability to wait for a

duration of length t is simply given by the probability to
land in an inter-activation time of length τ ≥ t, precisely
at time τ − t in this interval. As the probability to arrive
in an interval is uniform, one finds

ψij(t) =
∫ ∞

t

τfij(τ)
〈τ〉ij

1
τ
dτ (4)

and hence the above relation. The average waiting time
can be computed from the latter after integrating by parts

〈t〉ij =
∫ ∞

0

tψij(t)dt =
1
2
〈τ2〉ij
〈τ〉ij (5)

showing that the average waiting time depends on the
variance of the inter-activation time. At a fixed value of
the average inter-activation time, the waiting time can be
arbitrarily large if the variance of inter-activation times
is sufficiently large. This paradox, often called waiting
time paradox or bus paradox in queuing theory [22], is
an example of length-biased sampling. Let us note that
waiting-times and inter-activation times have the same
distribution when the process is Poissonian, in which case

ψij(t) = fij(t) =
1

〈t〉ij exp

(
− t

〈t〉 ij

)
(6)

1 For a discussion of the case of correlated events, we refer
to reference [21].

and that their tail has the same nature in the case of
power-law tails

ψij(t) ∼ t−α ⇔ fij(τ) ∼ τ−(α+1). (7)

The quantity 〈t〉ij/〈τ〉ij − 1, which is zero for a Poisson
process and positive or even infinite for a power law, is a
standard measure for the burstiness of a process [21,23].

2.2 Two spreading models

In this section, we focus on two popular models for diffu-
sion on networks, and show that in both cases, the non-
Markovianity of the random process alters the diffusion
by changing the ordering in which two types of events
take place. The nature of these events is however differ-
ent in each case. From now on, we will only consider the
waiting-time distribution ψij(t), relevant to describe dy-
namical processes on networks, and focus on the associ-
ated stochastic temporal network, in which edges appear
randomly according to the assigned waiting times.

2.2.1 Random walks

Random walk processes are a generic model for diffusion,
also used to uncover prominent structural features of net-
works. Applied to stochastic temporal networks, the model
is defined in continuous time as follows [18]. A walker lo-
cated at a node i remains on it until an edge leaving i
toward some node j appears. When such an event occurs,
the walker jumps to j without delay and then waits until
an edge leaving j appears. It is important to note that
the probability for the walker to jump to j depends on
ψij(t), but also on all ψik(t), where k are neighbours of i,
because the walker takes the first edge available for trans-
port. Once a walker has left a node, edges leaving this node
become useless for transport. For this reason, the proba-
bility to actually make a step from i to j is given by:

Tij (t) = ψij (t) ×
∏
k �=j

∫ ∞

t

ψik (t′) dt′ (8)

where each factor in the product denotes the probability
that an edge does not appear before time t. The probabil-
ity for making a jump to node j is given by the effective
transition matrix

Tij ≡
∫ ∞

0

Tij(t)dt , (9)

that verifies ∑
j

Tij = 1. (10)

When only two edges leave node i, say to j and k, equa-
tion (8) simplifies into

Tij (t) = ψij (t)
∫ ∞

t

ψik (t′) dt′. (11)
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2.2.2 Epidemic spreading

Epidemic spreading differs from random walk processes
because the number of infected individuals is not con-
served. It may decrease when an infected person recovers,
or increase when an infected person infects several of its
contacts. When applied on stochastic temporal networks,
standard models of epidemic spreading are characterized
by two distributions: (i) the probability distribution ψij(t)
that the infected node imakes a contact sufficient to trans-
mit the disease to node j at time t, after he has been
infected at time 0; the probability distribution ri(t) that
node i infected by the disease recovers at time t. As an
infected individual can only transmit the disease to a sus-
ceptible neighbor if it is still infected at the time of con-
tact [24], the probability of transmission from i to j, at
time t after i has been infected is given by:

Pij(t) = ψij(t)
∫ ∞

t

ri(t′)dt′. (12)

The overall probability that node i infects node j before
it recovers is given by:

Pij =
∫ ∞

0

Pij(t)dt. (13)

This quantity is usually referred to as the transmissibility
or infectivity of the disease for this link.

2.3 Effect of the shape of the distribution

A comparison between (11) and (12) clearly shows the
similarities and differences between the corresponding dy-
namical processes. In both cases, it is the overall proba-
bility that edge ij appears before another type of event
that determines if the spreading goes through this edge
or not. In the case of a random walk, it is a comparison
with the activations of neighbouring edges that matters.
In the case of epidemic spreading, it is instead a compar-
ison with the recovery process. Tij and Pij determine the
importance of an edge for each random process and thus
the pathways of diffusion. These quantities provide a static
representation of the dynamical process, not sufficient to
determine properties such as the speed of propagation,
but allowing to predict some of their asymptotic proper-
ties. For random walks, Tij defines a standard Markov
chain that determines the asymptotic properties of the
continuous-time random walk [18]. For epidemic spread-
ing, Pij directly affects the basic reproduction number
R0, namely the average number of additional people that
a person infects before recovering, in the limit when a
vast majority of the population is susceptible. The point
R0 = 1 defines the epidemic threshold separating between
growing and decreasing spreading. In tree-like networks,
where all edges have the same transmissibility P, one finds
R = P〈k(k−1)〉/〈k〉, where 〈k(k−1)〉/〈k〉 is the expected
number of susceptible neighbors of an infected node. The
epidemic threshold is thus reduced either by reducing the
transmissibility or the ratio 〈k2〉/〈k〉.

In epidemiology, researchers have mainly focused on
the non-exponential nature of the recovery time distribu-
tion, as infectious periods tend to be closely centered on
the mean duration of infection. ri(t) is usually modeled by
gamma distributions [25] or approximated by delta peaks.
Let us also note that when modeling epidemic spread-
ing of ideas or trends in social networks, fat-tailed dis-
tributions are more appropriate [26]. In complex systems
theory and computer science, research has focused on the
waiting time distribution ψij(t), either modeled by power-
law [15,27,28], Weibull [29] or log-normal distributions [30]
to account for the bursty dynamics observed in the empir-
ical data. In this direction, it is interesting to point that
much research has studied the effect of the tail, typically
a power-law tail, of the distribution on spreading. Yet, it
is neither the shape of the tail, nor the moments of the
distribution, that affect the pathways of diffusion. What
matters is instead the relative position of one distribu-
tion with another distribution, as equations (11) and (12)
clearly show. For an edge to be important, it should ap-
pear often before some other random event. It is true that
a small average or a fat tail2 tend to favor a distribution,
but it is not always the case as the following toy example
clearly shows.

Let us consider epidemic spreading on a regular tree of
identical nodes with degree 3. Each node has the recovery
distribution r(t) = δ(t− 1), e.g., recovery times occur ex-
actly at the average value 1, and each edge is characterized
by the waiting time distribution

ψ(t) =
{
α for t < 1,
1−α
t2 for t ≥ 1, (14)

where α ∈ [0, 1] tunes the shape of the distribution. For
any value of α: (i) the distribution is properly normalized;
(ii) its average (hence burstiness) is infinite; (iii) it ex-
hibits a power-law tail with exponent 2. Despite sharing
these properties, the transmissibility of an edge continu-
ously varies between 0 and 1 when varying α, as:

P =
∫ ∞

0

ψ(t)
∫ ∞

t

δ(t′ − 1)dt′dt =
∫ 1

0

ψ(t)dt = α. (15)

This observation implies qualitatively and quantitatively
different spreading behaviours when tuning α, as the sys-
tem is above the epidemic threshold when α > 1/2, and
below otherwise.

A corresponding example can be found for random
walks. Consider a node from which leave two edges whose
waiting times distributions follow (14) with parameters
α1 and α2. The resulting transition probabilities can be
spread along those edges in any possible way by a suit-
able choice of α1 and α2, leading to possibly dramatically
different behaviours of the random walker. For example
if one of the edges is the only bridge between two parts
of the graph, modulating its transition probability to zero
can ultimately disconnect the graph entirely, preventing
the ergodicity of the random walker.

2 When considering two distributions with the same average,
a distribution with a fatter tail tends to have more probability
assigned to small values of the random variable.
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Before closing this section, let us mention a couple of
interesting properties of (11) and (12). In general, these
equations define the overall probability that an event A
takes place before some other event B:

pA =
∫ ∞

0

a(t)
∫ ∞

t

b(t′)dt′dt, (16)

where a(t) and b(t) are two probability distributions. The
overall probability that B takes place before A is similarly
defined:

pB =
∫ ∞

0

b(t)
∫ ∞

t

a(t′)dt′dt, (17)

and it is straightforward to show that pA + pB = 1. When
both distributions are identical, a(t) = b(t), one finds pA =
pB = 1/2 as expected due to symmetry reasons. When
both distributions are exponentials, a(t) = rAe

−rAt and
b(t) = rBe

−rBt, where rA and rB are the rates at which
events take place, one finds

pA =
rA

rA + rB
. (18)

Finally, when one type of event is exponentially dis-
tributed, say b(t) = rBe

−rBt, (16) simply amounts to
the Laplace transform in the variable rB of the other
distribution:

pA =
∫ ∞

0

a(t)e−rBtdt. (19)

3 Discussion

The main purpose of this paper was to identify the prop-
erties of temporal patterns of edges and nodes that af-
fect pathways of diffusion on time-evolving networks. This
problem has attracted much attention in recent years, of-
ten leading to claims that temporal heterogeneity can sig-
nificantly alter spreading. However, there is still no general
understanding of the mechanisms by which burstiness af-
fects the diffusive process. Is it the tail of the inter-event
time distribution that matters, as often suggested, or its
variance? Our work suggests that the most important fac-
tor is instead the time-ordering of events, which identifies
the importance of an edge as the overall probability (16)
that it appears before some other event takes place; the
nature of those competing events depends heavily on the
kind of spreading process under scrutiny. This measure of
dynamical weight depends on the full probability distri-
butions of those competing events, and seemingly more
critically on their bulks than on their tails, because the
probability mass is mainly concentrated in the bulk. Im-
portantly, (16) is a scalar measure of importance of edges
that aggregates their full sequence of activation, and thus
provides a static picture properly taking into account the
temporal dynamics of edges. Contrary to standard proce-
dures, the importance of an edge is in general not pro-
portional to its number of activations, as in (18), but to
the probability that it participates in the diffusive pro-
cess. Future work will focus on the transient properties of
the diffusive processes, and aim at evaluating the effect
of inter-event time distributions on properties such as the
mixing time, or the peak time.
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