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Abstract. Using active gel theory we study theoretically the properties of the cortical actin layer of an-
imal cells. The cortical layer is described as a non-equilibrium wetting film on the cell membrane. The
actin density is approximately constant in the layer and jumps to zero at its edge. The layer thickness is
determined by the ratio of the polymerization velocity and the depolymerization rate of actin.

1 Introduction

Living cells maintain and change shape, adhere, spread,
divide and crawl through the agency of a dynamic, fila-
mentous scaffold known as the cytoskeleton [1]. Although
this structure is made up of many different constituents
the task of stress generation, with crucial consequences
for the mechanical properties of cells, lies primarily with
the acto-myosin component [2]. This substructure consists
of a meshwork of semi-flexible actin filaments interact-
ing with a large number of proteins among which myosin
molecular motors play a major role. Myosin motors, as-
sembled in minifilaments, consume free energy through
the hydrolysis of ATP molecules and can produce work.
By binding to the actin filaments, myosin minifilaments
create contractile stresses in the actin gel.

The crosslinked polymer network formed by actin and
its associated proteins differs profoundly from more famil-
iar thermal-equilibrium physical or chemical gels because
of the sustained energy dissipation by the molecular mo-
tors and some other proteins. It is usefully viewed as a
state of active matter [3] known as an active polar gel [4–8]
—“active” referring to the steady consumption of free en-
ergy at the scale of individual components, i.e., the actin-
bound molecular motors, and “polar” to the orientable, di-
rected character of the actin filaments. In particular, each
filament carries a distinction between its two extremities,
as does each constituent monomer. We will therefore refer
to the plus and the minus end of a filament.
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The filaments of the cytoskeleton undergo constant as-
sembly and disassembly: Each actin filament polymerizes
preferentially at the plus end and depolymerizes at the
minus end. This process is called treadmilling, and is reg-
ulated by a multitude of accessory proteins. Through de-
polymerization, filaments disintegrate, and through poly-
merization new filaments are generated, maintaining a
non-zero gel mass on average. Generation of new filaments
is assisted by nucleating proteins, such as formins that act
as seeds for actin polymerization and then stay attached
for some time to actin plus-ends, where they promote the
addition of monomers. The Arp2/3 complex instead binds
to existing filaments and remains attached to the minus
end of newly created actin filaments.

In this work we study consequences of the interplay
of actin polymerization and active contraction of actin
gels through a hydrodynamic description, that captures
the generic behavior of materials on large length and
time scales. Such a description starts with the correct
choice of slow variables [9] relying broadly on conservation
laws, broken continuous symmetries, and order-parameter
modes near a continuous phase transition. This approach
has been successfully extended to active systems [3,4,10,
11], held in stationary states far from thermal equilibrium
by the sustained dissipation of free energy. Despite the
very broad range of length scales, from microns to kilo-
meters, on which organized active matter is seen, there is
a degree of universality in its hydrodynamic properties,
classified by the type of broken symmetry and applicable
conservation laws: examples include waves without con-
ventional inertia, anomalously large number fluctuations,
and a tendency of instability of quiescent states towards
spontaneous flow [3].
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Fig. 1. a) Confocal fluorescence microscopy image of a HeLa
cell with F-actin labeled by Lifeact-Ruby. Below the plasma
membrane a well-defined zone of high fluorescence represents
the actin cortex. Image with courtesy from M. Fritzsche and
G. Charras. b) Schematic illustration of the cortex dynamics
considered in this work. Nucleation-promoting factors located
at the plasma membrane nucleate new actin filaments or assist
elongation of existing filaments at rate k∗

a. This generates a
flux of polymerized actin vpρ0, where ρ0 is the gel density at
the surface and vp = k∗

aδ is the polymerization velocity, δ being
the size of an actin monomer. Filaments disassemble at a rate
kd anywhere in the cortex. Not shown is the growth of actin
filaments away from the membrane. Molecular motors act as
active cross-links and generate active stresses in the cortex.

We focus on the fact that a substantial fraction of the
actomyosin is located in a layer, known as the actin cor-
tex [12,13], adjacent to the plasma membrane of the cell,
see fig. 1a. This localization of one component to the vicin-
ity of a wall is reminiscent of the physical phenomenon of
wetting. However, prevalent explanations of the cortical
actin profile do not take advantage of this analogy, re-
lying instead on an imposed spatial separation between
the zones of polymerization and depolymerization. In this
paper we show that the active contractility alluded to in
an earlier paragraph can drive a transition to a steady
state maintained by a polymerization-depolymerization
process, see fig. 1b, in which the polymer concentration
has a profile very similar to that of a wetting layer [14].
The cortex thickness and actin density profile emerge nat-
urally from our treatment. Recall that in thermal equilib-
rium systems wetting arises through the selective attrac-
tion of a component to a surface. In the following we show
that contractility, although quite different from an attrac-
tive potential, plays a similar role in driving a condensa-
tion at the plasma membrane. To obtain this result, we
generalize the hydrodynamic description of active gels to
include crucial non-linear density dependences.

The rest of this paper is organized as follows. In sect. 2
we present the hydrodynamic equations for polymerizing
active gels. In sect. 3, we study an active gel polymeriz-
ing at a surface, which yields a description of the actin
cortex of animal cells. The properties of the gel can be
understood in terms of active wetting and dewetting by
filament assembly and disassembly.

2 Hydrodynamic description

We now present the hydrodynamic equations governing
the dynamics of an assembling active actin gel. We assume
that the gel is assembled by actin polymerization at a sur-

face. In a cell or in an in vitro experiment, the polymeriza-
tion is promoted by nucleating proteins, such as proteins
of the formin family, see fig. 1b. Away from the surface,
the actin gel assembles by elongation of existing filaments
or by nucleation of new filaments. The gel disassembles be-
cause of monomer removal at filament minus-ends or by
severing of the gel filaments that produces small filaments,
which diffuse into the solution. Myosin molecular motors
assemble into small filaments that act as cross-links, which
actively generate mechanical stress in the filament net-
work. The network is permeated by a solvent containing,
in particular, unbound motors and actin monomers. We
limit ourselves to the case where the exchange of motors
between the actin network and the solvent is so fast that
we can assume them to be equilibrated and where the mo-
tors diffusion is fast enough that the concentration of free
motors in the solvent is constant. In a first approximation,
the concentration of motors bound to actin is then propor-
tional to the local actin concentration. We have verified
numerically that our results do not change significantly
when motor binding and unbinding and motor diffusion
are taken explicitly into account, at least in the case when
the gel does not impede the diffusion of motors.

As mentioned in the introduction, actin filaments are
polar objects. Consequently, an actin gel can present a
macroscopic vectorial order represented by a polarization
field p. In the present treatment we ignore the subtleties
associated with actin polarization and consider in the fol-
lowing the case of an isotropic gel. Our detailed calcula-
tions will be for the case where the actin concentration
varies only along one direction, where transverse varia-
tions in p play no role.

Actin polymerizes on a planar surface located in the
plane z = 0. The gel and the solvent are restricted to
the half-space z ≥ 0. If the gel is homogeneous in the di-
rections parallel to the surface, its properties and in par-
ticular its density only depend on the z coordinate. We
will explore elsewhere the dynamics of variations in the
xy-plane.

2.1 Conservation laws

The hydrodynamic description is based on conservation
laws for mass and momentum. Mass conservation of the
gel and the solvent read

∂tρg + ∂αρgvg,α = −kdρg,

∂tρs + ∂αρsvs,α = kdρg. (1)

Greek indices denote the three spatial directions x, y, and
z and we have adopted Einstein’s summation convention.

In the above expressions, ρg and ρs, respectively, de-
note the densities of the gel and the solvent, while vg

and vs are the corresponding velocities. Degradation of
the gel due to depolymerization and severing occurs at a
constant rate kd. The gel is produced on the one hand
by growth of existing filaments, and on the other hand
by the nucleation of new actin filaments. There is no sig-
nificant spontaneous nucleation of new filaments at con-
centrations of monomeric actin present in cells. Instead
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nucleation-promoting factors regulate the generation of
new filaments and their elongation. Members of the formin
family and the Arp2/3 complex are important examples
of nucleation-promoting factors [15–17]. Formin is located
directly beneath the plasma membrane, where it gener-
ates new filaments. The Arp2/3 complex needs to bind to
existing filaments before it can act as the seed of a new
filament. Still, it is predominantly localized in the vicin-
ity of the cell membrane. We therefore consider here for
simplicity that the actin gel growth occurs only at the
surface. Therefore, the filament density far away from the
surface vanishes. We account for elongation and nucleation
on the surface by a boundary condition on the gel flux at
z = 0. Explicitly, we write ρgvg,z|z=0 = vpρ0, where vp is
the polymerization velocity and ρ0 the gel density at the
surface, which is imposed by the density of nucleation-
promoting factors.

2.2 Constitutive relations

To fully specify the behavior of the actin gel, we must
provide constitutive equations. They link the generalized
thermodynamic fluxes to the generalized thermodynamic
forces. We follow here closely the approach of Callan-Jones
and Jülicher [18] to describe active permeating gels. The
fluxes are in our case the gel velocity, the time derivative
of the strain in the gel, the relative current between actin
gel and solvent j = ρg(vg − v), where v is the center-of-
mass velocity, the deviatoric stress tensor σ and the rate of
ATP consumption. The generalized forces are the gradient
in the relative chemical potential μ̄ of the gel and the sol-
vent, the center-of-mass velocity gradient ∇v, the partial
stress of the gel σg and the activity of the system. The rel-
ative chemical potential is given by μ̄ = μg/mg − μs/ms,
where μg and μs are the respective chemical potentials of
the gel and the solvent and mg and ms the masses of the
solvent and actin monomer molecules. Active processes are
eventually driven by the hydrolysis of ATP into ADP and
inorganic phosphate Pi, with chemical potentials μATP,
μADP, and μP, respectively. We express the system’s ac-
tivity through the difference Δμ = μATP − μADP − μP. In
the following Δμ is considered as constant in space and
time. We do not consider any further the corresponding
thermodynamic flux which provides the rate r of ATP
consumption in the system.

The constitutive equations are obtained from an ex-
pansion of the thermodynamic fluxes in terms of the cor-
responding forces. Here, we give only the final equation
for the relative current between actin and solvent for an
isotropic active gel [18]

jα = −γ∂αμ̄ + χ∂βσg
αβ . (2)

In this expression σg
αβ are the components of the partial

stress tensor of the gel phase, not to be confused with
the total stress [18]. It is analogous to the particle phase
stress in suspension mechanics [19,20] In steady state,
elastic effects vanish and the stress is purely viscous, so
that σg

αβ = 2ηvg,αβ − ζΔμδαβ where η is the gel viscosity,

vg,αβ = 1
2 (∂αvg,β +∂βvg,α), and ζΔμ gives the magnitude

of the actively generated (isotropic) stress in the gel phase.
The first term in expression (2) accounts for the diffusive
current due to gradients in the relative chemical potential.
The second term describes the flux that results from gra-
dients in the gel stress. Finally, the permeation constant
ρgχ

−1 ∼ ηs/ξ2, where ξ is the gel’s mesh size and ηs the
solvent viscosity.

As the only vector for a non-polar system is the gra-
dient vector, within the Onsager linear approach the ac-
tive contribution to the current is proportional to ∂αΔμ
and vanishes if Δμ is constant in space, which we assume.
Fluxes stemming from the system’s activity are captured
by the last term of the stress expression. The coupling
parameter ζ here depends on the gel density ρg and is
negative due to the contractility of the motors.

We proceed using the same approximation as in
ref. [18]: The osmotic pressure Π̃ satisfies the Gibbs-
Duhem equation dΠ̃ = ρgdμ, if the volume of the system
is independent of the composition and incompressible. We
define an effective osmotic pressure including active effects
as Π = Π̃ + ζΔμ and, we thus get

ρg

χ
(vg,α − vα) = 2η∂βvg,αβ − ∂αΠ, (3)

where we have expressed the gel stress in terms of the
gel shear rate. There are two competing dissipative mech-
anisms, the gel viscosity and permeation of the solvent
through the actin gel. The comparison between these two
types of dissipation defines a permeation length Lp =
(ηρ−1

g χ)1/2 ∼ (η/ηs)1/2ξ. The relative permeation current
on the left-hand side of eq. (3) is negligible compared to
the viscous dissipation term if we consider the dynamics
on length scales smaller than the permeation length scale
Lp. For typical viscosities η ∼ 108ηs and typical mesh sizes
of ξ of a few tens of nanometers, the characteristic length is
of the order of a few hundreds of microns and thus macro-
scopic. We therefore neglect permeation in the following.

From now on, we consider only the gel density ρg and
the corresponding velocity field vg. Dropping the g indices,
the equations read

∂tρ + ∂αρvα = −kdρ,

2η∂βvαβ − ∂αΠ(ρ) = 0. (4)

These equations are identical to those of a hydrodynamic
theory for an effective one component compressible active
gel [4,5].

3 Active pre-wetting

We consider a situation where the gel is assembling at
the surface located at z = 0 and assume invariance under
translations in the surface plane. This leaves us with a one-
dimensional problem. The dynamic equations (4) read for
z ≥ 0

∂tρ + ∂zρv = −kdρ,

2η∂zv − Π(ρ) = 0, (5)
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where v denotes the z-component of the gel velocity. The
second equation follows from integrating eq. (4). Let us
recall that the boundary condition on the gel current at
the surface is ρv|z=0 = ρ0vp.

To complete our description, we need to provide an
expression for the effective pressure Π. Usually, the os-
motic pressure Π̃ is a monotonic increasing function of
the actin density. However, the active contribution is neg-
ative and has a maximum as a function of density for
a given crosslink density [21]. The passive osmotic pres-
sure always dominates at large densities but if activity is
large enough, the effective osmotic pressure can become a
non-monotonic function of density, which is indicative of
a phase separation in the solution induced by the contrac-
tility of the molecular motors. In the following, we use

Π = aρ3 + bρ4, (6)

where the coefficient a depends on activity. For vanish-
ing activity, standard three-body interactions should dom-
inate and a should be positive. For large activity, contrac-
tility should dominate and a should be negative. In prin-
ciple, the expansion in powers of ρ should contain linear
and quadratic terms as well. Whether contractility should
be reflected in the quadratic or in the cubic term depends
on how the motor density relates to the actin polymeric
density. For example, one could argue that contractility
requires a pair of actin filaments as well as myosin, so if
the bound myosin concentration is proportional to that of
the filamentous actin, one would expect a cubic ρ depen-
dence. The choice of the functional form is not essential,
what really matters is the non-monotonicity of Π(ρ). If
a < 0 then the activity leads to contractile stresses.

We solve eq. (5) in steady state. Combining the two
equations, we get for the velocity field

2ηv =
(

∂ρ

∂z

)−1

ρf(ρ), (7)

where we have introduced the auxiliary function

f(ρ) = −2kdη − aρ3 − bρ4. (8)

The general solution to the steady state equations can
then be written in the form

dρ

dz
=

1
2ρ0ηvp

ρ2f(ρ) exp
{∫ ρ

ρ0

2kdη

ρ′f(ρ′)
dρ′

}
, (9)

leading to

v =
ρ0

ρ
vp exp

{
−

∫ ρ

ρ0

2kdη

ρ′f(ρ′)
dρ′

}
. (10)

From these solutions we infer that the gel density ρ
jumps to zero at densities fulfilling f(ρ) = 0. Indeed, equa-
tion (10) implies v ≥ 0 with v = 0 for f = 0 and no mate-
rial is transported beyond such a point. Consequently, as
soon as f presents zeros a well-defined cortical layer with
a sharp edge can be formed. The existence of zeros of f
depends on the activity. There exists a critical value ac

beyond which a wetting layer appears. For −a > −ac > 0
the function has two zeros, while for −a < −ac it has
none. If the activity is equal to the critical value ac, the
function f has exactly one zero. As we will discuss be-
low, the transition at a = ac can be viewed as an active or
non-equilibrium analog of a pre-wetting transition [14,22].

3.1 The weak contractile activity regime

The weak contractile activity regime is defined by −a <
−ac, such that f(ρ) < 0 for all ρ. Since ρ tends to zero as
z → ∞, we have in this case f(ρ) ≈ −2kdη and thus

dρ

dz
≈ − kd

ρ0vp
ρ2 exp

{
− ln

ρ

ρ′0

}
, (11)

where ρ′0 is a constant. The density thus eventually decays
exponentially. If ρ0 is small, we have ρ′0 ≈ ρ0 and

dρ

dz
= −kd

vp
ρ, (12)

such that the characteristic length is vp/kd. For large val-
ues of ρ0, the characteristic length is instead vpρ0/kdρ

′
0,

with

ρ′0 = ρ0 exp
{∫ ρ0

0

2kdη

ρ′

(
1

f(ρ′)
+

1
2kdη

)
dρ′

}
. (13)

The profile can thus be a simple exponential or it can
present a “shoulder” presaging the existence of a well-
defined cortical layer for high contractile activity. In the
latter case, the profile presents two inflection points, which
are determined by ∂(∂zρ)/∂ρ = ∞. This equation has
two solutions for −a large enough but still smaller than
−ac. In this case, we can define the layer thickness L via
the condition of mass conservation in steady state ρ0vp ∼
kdρmL, where ρm is approximately given by the value of
ρ maximizing f .

Examples of density profiles for a subcritical activity
and two different values of ρ0 are given in fig. 2.

3.2 The large contractile activity regime

We consider now the case −a > −ac, such that f(ρ) has
two real roots ρ1 > ρ2. From eq. (7) and since v ≥ 0,
we infer that for a density ρ(z = 0) = ρ0 < ρ2 the den-
sity approaches 0 with increasing z. Indeed, in this case
∂ρ/∂z < 0 for all z > 0. As a consequence, the density
profile behaves very similarly to the weak activity case
−a < −ac. In contrast, for ρ0 > ρ2, the density approaches
the value ρ1. As v → 0 for ρ → ρ1, this value is reached
at a finite distance z from the surface.

We can calculate the density profile for ρ ≈ ρ1. Then
f(ρ) = −α(ρ − ρ1) with α = |f ′(ρ1)| such that

∫ ρ

ρ0

2kdη

ρ′f(ρ′)
dρ′ ≈ −2kdη

αρ1
ln

|ρ − ρ1|
|ρ0 − ρ1|

(14)
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Fig. 2. Steady state density and velocity profiles in the weakly
active regime, −a < −ac from numerical solutions of eqs. (5).
a) Densities as a function of the distance from the polymerizing
surface for surface densities ρ0 = 1.3 and ρ0 = 2.0, respectively.
Inset: auxiliary function f(ρ). b) Corresponding velocity pro-
files; dotted: ρ0 = 1.3 and solid: ρ0 = 2.0. Parameters are
a = −2kdη and b = kdη.

and

dρ

dz
= − αρ2

1

2ρ0ηvp
(ρ − ρ1)

[
|ρ − ρ1|
|ρ0 − ρ1|

]−2kdη/αρ1

. (15)

We can solve the latter equation explicitly. In the case
ρ0 ≈ ρ1 we get for the whole density profile

ρ(z) = ρ1 + (ρ0 − ρ1)
{

ρ1

ρ0

kd

vp
(L − z)

}αρ1/2kdη

. (16)

Note, that the density profile in the vicinity of L depends
on the value of αρ1/2kdη that fixes the slope of the profile
when ρ = ρ1. In figs. 3 and 4, we present steady state
solutions for various nucleator densities ρ0 for αρ1/2kdη <
1 and αρ1/2kdη > 1, respectively.

The thickness of the gel layer is given by the flux bal-

ance condition ρ0vp =
∫ L

0
kdρdz. Alternatively, we can

estimate the cortex thickness by setting z = 0 in the ap-
proximate density profile (16), yielding

L ∼ ρ0

ρ1

vp

kd
. (17)

As can be seen in figs. 3 and 4, for ρ ≈ ρ0 it approximates
well the thickness obtained from the numerical solution to
eqs. (5). For ρ0 > ρ1 the length increases linearly with ρ0,
however, with a slope that is different from the one given
in eq. (17).
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Fig. 3. Steady-state density and velocity profiles in the
strongly active regime, −a > −ac, from numerical solutions
of eqs. (5). a) Densities as a function of the distance from the
polymerizing surface for surface densities ρ0 = 1.2, ρ0 = 1.3,
and ρ0 = 2.3, respectively. Inset: auxiliary function f(ρ), which
has zeros at ρ1 = 2.08 and ρ2 = 1.23. b) Corresponding ve-
locity profiles; dotted: ρ0 = 1.2, solid: ρ0 = 1.3, and dashed:
ρ0 = 2.3. Inset: cortex width as a function of ρ0 from numerical
solution of eqs. (5) (dots) and from eq. (17) (line). Parameters
are a = −2.3kdη and b = kdη.

4 Discussion

In this work, we have introduced a hydrodynamic theory
for describing the dynamics of active gels in the presence
of filament polymerization and depolymerization. Our de-
scription of filament assembly and disassembly requires
some comments. Specifically, we have taken the depoly-
merization rate and viscosity to be constant. Our main
results are more general and do not depend on this as-
sumption. The same behavior is obtained if we keep the
gel density dependences of depolymerization rate and vis-
cosity. In general, however, the depolymerization process
is more complex as the rate of filament disassembly de-
pends on mechanical stresses, the degree of severing, and
the presence of actin-associated proteins like cofilin or
gelsolin. In addition the fact that filaments depolymer-
ize from their ends might introduce a gradient in the
effective depolymerization rate. Together these processes
might even lead to filament subpopulations with different
turnover rates [23]. Similarly, the polymerization process
is more involved than assumed in the present work. We
have restricted it to be spatially localized at the mem-
brane, while actin filaments also grow in the bulk and can
be nucleated away from the membrane. This possibility
will be discussed in a forthcoming publication. We be-
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Fig. 4. Steady state density and velocity profiles in the
strongly active regime, −a > −ac, from numerical solutions
of eqs. (5). a) Densities as a function of the distance from the
polymerizing surface for surface densities ρ0 = 0.9, ρ0 = 0.94,
and ρ0 = 1.4, respectively. Inset: auxiliary function f(ρ), which
has zeros at ρ1 = 1.0 and ρ2 = 0.93. b) Corresponding ve-
locity profiles; dotted: ρ0 = 0.9, solid: ρ0 = 0.94, and dashed:
ρ0 = 1.4. Inset: cortex width as a function of ρ0 from numerical
solution of eqs. (5) (dots) and from eq. (17) (line). Parameters
are a = −9kdη and b = 7kdη.

lieve, however, that linking cortex formation to an out-
of-equilibrium wetting phenomenon opens a new way of
thinking about the problem worth being fully investigated.
This picture is a non-equilibrium analog of a (pre-)wetting
transition whereby the actin condensation on the mem-
brane is driven by the contractility of the myosin molecu-
lar motors. For sufficiently strong motor activity, the actin
density is almost constant up to a certain thickness, where
it drops sharply to zero. Our simplified theory produces a
singularity at the edge of the layer. This singularity can
be smoothed out by adding terms in the osmotic pres-
sure depending on the gradient of the density as is clas-
sically done in Ginzburg-Landau theory. The thickness of
the non-equilibrium wetting layer is determined by the
polymerization velocity at the membrane and the depoly-
merization rate.

The description of the cortical actin layer as an ac-
tive wetting layer suggests several extensions of this work.
The interaction between two adjacent cortical layers is ob-
viously important in situations when the cell thickness be-
comes small. This is notably the case for the lamellipodia
of cells crawling on a solid substrate, for example, kera-
tocyte cells. Under these conditions one might expect a
non-equilibrium analog of capillary condensation [24,25].

While in this work we have focused on steady-state prop-
erties of the cortical layer, we have also started to study
the dynamics of cortex formation as well as dynamic in-
stabilities of the cortex. In addition, our theory can be
applied to in vitro experiments on cell extracts that con-
tract in presence of actin assembly and disassembly [21].
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