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Abstract. We study the effects of nonlocal control of pulse propagation in excitable media. As a generic
example for an excitable medium the FitzHugh-Nagumo model with diffusion in the activator variable is
considered. Nonlocal coupling in form of an integral term with a spatial kernel is added. We find that
the nonlocal coupling modifies the propagating pulses of the reaction-diffusion system such that a variety
of spatio-temporal patterns are generated including acceleration, deceleration, suppression, or generation
of pulses, multiple pulses, and blinking pulse trains. It is shown that one can observe these effects for
various choices of the integral kernel and the coupling scheme, provided that the control strength and
spatial extension of the integral kernel is appropriate. In addition, an analytical procedure is developed
to describe the stability borders of the spatially homogeneous steady state in control parameter space in
dependence on the parameters of the nonlocal coupling.

1 Introduction

Excitable media occur in a wide range of physical, chem-
ical, biological, as well as socio-economic systems, and
they are often modelled as nonlinear reaction-diffusion
systems [1–5], which for certain parameter ranges sup-
port traveling excitation pulses. An important applica-
tion in neuroscience is the propagation of information as
electrical pulses along a nerve fiber. Excitation pulses in
the form of spreading depression or depolarization are
also associated with pathological states of brain activity
occurring, for instance, during migraine or stroke [6–8].
If, in addition to local diffusion, nonlocal spatial cou-
pling is present, this represents an important internal
control mechanism in neuronal wave dynamics. The re-
sulting spatio-temporal patterns in nonlocally coupled
reaction-diffusion systems can be quite complex, rang-
ing from traveling waves, Turing patterns, and pulse
trains to spatio-temporal chaos [9–22]. Such nonlocal cou-
plings in the form of integrals with a spatial kernel can
be derived as limiting cases of two- or three-component
activator-inhibitor reaction-diffusion models with or with-
out advection, when fast inhibitor variables are eliminated
adiabatically [15,23–27]. In particular, asymmetric spa-
tial kernels [27] arise from differential advection of some
chemical species, e.g., in heterogeneous catalysis, marine
biology, or ecology [28–33]. It has been shown that the
adiabatic elimination of a fast variable in a three-variable
system results in a nonlocal integral term that has the
form of an exponential kernel [26], see also [27]. In the limit
of global spatial coupling, i.e., fast diffusion of the elim-
inated variable, a large number of experimental and the-
oretical studies, e.g., in the CO oxidation on platinum
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surfaces [34,35] and other catalytic processes [28], as well
as in electrochemistry [36] or in semiconductors [37,38]
have shown that global feedback can control propagat-
ing waves and generate spatially periodic patterns such as
Turing patterns or travelling waves [39]. In electrochem-
istry, models with explicit nonlocal coupling have been de-
rived from more elementary models by applying a Green’s
function formalism, see e.g. [40]. Nonlocal coupling plays
also an essential role in the formation of chimera states in
systems of coupled oscillators [41–48].

In neuronal systems, especially in the visual cortex,
several experimental studies have given evidence for non-
local long-range connectivity of neurons [49,50]. In the
framework of the FitzHugh-Nagumo model of excitable
dynamics augmented by a spatially discrete nonlocal cou-
pling term, it was shown that traveling pulses in one
spatial dimension can be suppressed by various con-
trol schemes of spatially nonlocal or time-delayed cou-
pling [51,52]. This has been explained by the effective
change of the excitation threshold of the original reaction-
diffusion system by nonlocal interaction at a certain
spatial distance and a certain coupling strength. The nu-
cleation and propagation of spatially localized reaction-
diffusion waves has also been studied in two-dimensional
flat [53] and curved surfaces [54] under global spatial feed-
back in the framework of the FitzHugh-Nagumo model. In
particular, it was shown that the stability of propagating
wave segments depends crucially on the curvature of the
surface [54]. In two- and three-dimensional excitable me-
dia more complex spatio-temporal patterns like 2D spiral
waves and 3D scroll waves can arise [55–57].

While much work has been done on the effect of
time-delayed feedback upon spatio-temporal patterns in
reaction-diffusion systems, e.g., [58–61], no systematic
investigation of the influence of a distributed nonlocal
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spatial coupling upon pulse propagation in excitable
media has been carried out to the best of our knowledge.

In this paper we restrict ourselves to one-dimensional
excitable media modelled by the FitzHugh-Nagumo equa-
tions, and study the effects of nonlocal spatial cou-
plings upon pulse propagation. In contrast to previous
work [51,52], where the nonlocal coupling was modelled
by the dynamical variable taken at a certain discrete spa-
tial distance, here the nonlocal coupling is described by
an integral over space weighted with a spatial kernel,
which is chosen as rectangular, exponential, or Mexican
hat like. A Mexican hat kernel is a superposition of two
Gaussians with opposite sign and different widths, and
hence models a nonmonotonic spatial interaction which is
attractive for small distances and repulsive for large dis-
tances; it is of particular relevance for interacting cortical
neurons since they combine excitatory coupling of neigh-
bouring cells with long-range inhibitory interactions of
distant cells [49,62,63]. We show that the resulting spatio-
temporal patterns can be acceleration, deceleration, and
suppression of propagating pulses as well as generation of
Turing patterns, and multiple pulses and blinking travel-
ing waves, depending upon the type of spatial kernel, the
coupling strength, the coupling range, and the coupling
scheme. Specifically, we will extend our previous work [52]
in three directions: first of all, we consider spatially ex-
tended integral kernels, such as the exponential and the
Mexican hat function. Second, we do not only investigate
the suppression of propagating pulses but show that non-
local control can also be used to accelerate or decelerate
pulses as well as to generate pulses or wave trains. We
will take all these effects into account and explore sys-
tematically the control parameter space showing where to
expect which kind of behavior, i.e., we vary the strength
and range of the coupling, and the coupling scheme for dif-
ferent nonlocal coupling kernels. Thus we provide an ex-
haustive picture how nonlocal coupling affects pulse prop-
agation in an excitable medium. Finally, we will gain some
analytical insights by analyzing the stability of the homo-
geneous steady state, and determining how its stability
is affected by nonlocal control. We show that the control
scheme enables the generation of a plethora of different
instabilities.

The organization of the paper is as follows. In Sec-
tion 2 we introduce the FitzHugh-Nagumo model with
nonlocal coupling. In Section 3 a linear stability analysis
of the homogeneous steady state is performed, which gives
rise to various spatio-temporal instabilities. In Section 4
we present simulations of the nonlinear reaction-diffusion
equations with different nonlocal kernels, and discuss the
resulting complex patterns.

2 FitzHugh-Nagumo model with nonlocal
coupling

In this paper an excitable medium is modeled by the
generic FitzHugh-Nagumo (FHN) system [64–66] which
is spatially extended in one dimension by diffusion only in

the activator variable:

u̇ = u − u3

3
− v + ∂xxu, (1)

ε−1v̇ = u + β, (2)

where u and v denote the activator (membrane poten-
tial) and the inhibitor (recovery variable), respectively,
0 < ε � 1 separates the time scale of the fast activa-
tor u and the slow inhibitor v, and β is an indicator for
the excitability of the system. The diffusion constant is
scaled to unity. In the excitable regime (β > 1) there
exists a stable homogeneous steady state. These equa-
tions show – for appropriate values of ε and β – the well-
known behavior of supporting traveling pulses and waves
after supra-threshold excitations. Throughout this paper
we use the parameters ε = 0.08 and β = 1.2. The spatially
homogeneous steady state is given by:

(u∗, v∗)T =
(
−β,

β3

3
− β

)T

. (3)

Now a nonlocal control term K̂ is added to the system
equations (1) and (2). Introducing the vector notation
U = (u, v)T we can write the nonlocally coupled FHN
system as:

EU̇ = F (U) + D̂U + K̂U, (4)

where

E =
(

1 0
0 ε−1

)
, (5)

is the time scale separation matrix, F (U) describes
the FHN dynamics given by the right hand sides of
equations (1) and (2), and

D̂ =
(

∂xx 0
0 0

)
, (6)

is the diffusion matrix. The nonlocal control operator K̂
is defined as follows:

K̂U = κA

[∫
U (x − x′) ker (x′) dx′ − ηU (x)

]
, (7)

where κ ∈ R is the control strength, A ∈ R
2×2 is a 2 × 2

coupling matrix, which may be chosen, e.g., as one of the
following:

Auu =
(

1 0
0 0

)
, Auv =

(
0 1
0 0

)
,

Avu =
(

0 0
1 0

)
, Avv =

(
0 0
0 1

)
, (8)

where the superscripts label the coupling scheme, e.g.,
Auu denotes a matrix representing the coupling scheme
uu. The function ker (x) is an integral kernel satisfying:

ker (x) = ker (−x) ,

∫ ∞

−∞
|ker (x)|dx = 1.
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The term

ηU (x) =
∫

ker(x′)dx′U (x) (9)

in equation (7) is introduced in order to make the con-
trol noninvasive with respect to the homogeneous steady
state, i.e., the homogeneous steady state is not changed
by the control term K̂U . In this paper we will focus on
the following three symmetric integral kernels:

ker (x) =
1
2

(δ (x + σ) + δ (x − σ)) , (10)

ker (x) =
1
2σ

e−
|x|
σ , (11)

ker (x) =
N

σ
√

2π

(
1
r
e
− x2

2(rσ)2 − e−
x2

2σ2

)
, 0 < r < 1, (12)

where σ is a characteristic nonlocal coupling range, and
r = σe/σi < 1 describes the ratio of short-range exci-
tatory (σe) and long-range inhibitory (σ ≡ σi) interac-
tion in the Mexican hat kernel equation (12). The pref-
actor N is chosen such that the kernel in equation (12)
is normalized in the L1 norm. For the δ-function equa-
tion (10) and the exponential kernel equation (11) η = 1
(to secure noninvasiveness), while for the Mexican hat ker-
nel equation (12) η = 0. Figure 1 shows plots of these
kernels, and additionally an anisotropic δ-function ker-
nel ker (x) = δ(x + σ) (corresponding to backward cou-
pling only) and a rectangular kernel which simplifies to
the symmetric δ-function kernel in the limit of zero width
w. Suppression of pulse propagation by isotropic (sym-
metric) and anisotropic (asymmetric) δ-function integral
kernels has already been studied by Schneider et al. [52].

3 Stability analysis

Before investigating the effects of the control upon a trav-
eling pulse, we will focus on the instabilities of the ho-
mogeneous steady state (HSS) first. This will allow us to
get some analytical insight. After a survey of the possible
spatio-temporal instabilities in excitable media we will an-
alytically describe the stability borders in the control pa-
rameter space of the control strength κ and the nonlocal
coupling range σ.

3.1 Instabilities of the homogeneous steady state

Generally, the stable homogeneous steady state of a spa-
tially extended system can become unstable by different
spatio-temporal bifurcations when the control parameters
are changed. We characterize the different instabilities by
the behavior of the dispersion relation obtained from a lin-
ear stability analysis of the homogeneous steady state, i.e.,
the eigenvalue Λ (k) in dependence upon the wavenum-
ber k. Depending upon the value kc at which the bi-
furcation (Re Λ (kc) = 0) occurs and the corresponding
imaginary part of the eigenvalue ImΛ (kc), four different

Fig. 1. Various nonlocal control kernels ker (x), see equa-
tions (7), (10)–(12), for different characteristic interaction
lengths σ. The length is scaled in units of Δx = 8.59 which
is the pulse width of the uncontrolled pulse for (ε, β) =
(0.08, 1.2). The anisotropic δ-function (top panel, labeled
aniso) corresponds to backward coupling for a pulse traveling
in positive x-direction.

cases can be distinguished: (i) a Hopf instability caus-
ing spatially homogeneous oscillations occurs for kc = 0
and ImΛ(kc) �= 0. (ii) A Turing instability is given when
kc �= 0 and ImΛ(kc) = 0, which leads to a stationary spa-
tial modulation. (iii) A wave instability is characterized by
kc �= 0 and ImΛ(kc) �= 0. Both (ii) and (iii) have in com-
mon that upon further increase of the bifurcation parame-
ter there appears a finite interval of unstable wavenumbers
[k−, k+]:

ReΛ (k) > 0 ∀ |k| ∈ [k−, k+]. (13)

(iv) If the instability ReΛ (kc) = 0 occurs at kc → ∞, the
condition (13) is not fullfilled. Rather, the following degen-
erate case holds upon further increase of the bifurcation
parameter beyond the bifurcation:

Re Λ (k) > 0 ∀ |k| > k0. (14)

Thus arbitrarily large wavenumbers become unsta-
ble, which can cause patterns with arbitrarily short
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Fig. 2. Schematic dispersion relation of the homogeneous
steady state for Turing or wave instability (top) and salt-and-
pepper instability (bottom). The solid and dashed lines mark
ReΛ(k) at the bifurcation point and beyond the bifurcation,
respectively. The hatched region corresponds to the band of
unstable wavevectors beyond the bifurcation.

Table 1. Instabilities of the homogeneous steady state that
give rise to pattern formation in reaction-diffusion systems.

Instability |kc| ImΛ (kc)

Hopf 0 �= 0
Turing �= 0, finite = 0
Wave �= 0, finite �= 0
Salt-and-pepper infinite;

∃k0 : Re Λ+(k) > 0 ∀ |k| > k0 – –

wavelengths. Such instabilities have been called salt-and-
pepper patterns [67], and it has been suggested that they
might occur in morphogenesis when differentiated cells in-
hibit the differentiation of neighboring cells, as is seen, for
example, with differentiated neuroprogenitor cells in the
epithelium of Drosophila embryos [67]. Figure 2 illustrates
the difference of the Turing or wave instability (upper
panel) and the salt-and-pepper instability (lower panel).
A tabular overview of the instabilities (i)–(iv) is given in
Table 1. Three examples of the spatio-temporal patterns
generated by the instabilities (ii)–(iv) are provided in Fig-
ure 3 from simulations of the full nonlinear equations (4).
After some initial transients a wave instability (a), a Tur-
ing instability (b), and a salt-and-pepper instability (c)
develops. In each case the initial condition at t = 0 is
the homogeneous steady state to which Gaussian white
noise is added. Figure 4 shows schematically the space-
time patterns corresponding to the instabilities (i)–(iii) of
the homogeneous steady state in reaction-diffusion sys-
tems: Hopf, Turing, wave train; additionally, the pattern
on the very right corresponds to a combined Turing-Hopf
codimension-two instability [68].

(a)

(b)

(c)

Fig. 3. Space-time plots of the onset of spatio-temporal in-
stabilities of the homogeneous steady state caused by nonlocal
control. As initial condition weak white noise is added to the
homogeneous steady state. The control is switched on at t = 0.
(a) Wave instability: Mexican hat kernel, uu-coupling-scheme,
r = σe/σi = 0.9, (κ, σi) = (1.5, Δx), (b) Turing instability:
Mexican hat kernel, uv-coupling-scheme, r = σe/σi = 0.9,
(κ, σi) = (1.75, Δx), (c) Salt-and-pepper instability: exponen-
tial kernel, uv-coupling-scheme, (κ, σ) = (−1.25, 2Δx). Pa-
rameters: ε = 0.08, β = 1.2, L = 800, simulation timestep
dt = 0.005.

Fig. 4. Schematic space-time patterns in reaction-diffusion
systems corresponding to the instabilities of the homogeneous
steady state: Hopf, Turing, wave train, Turing-Hopf (from left
to right).

3.2 Stability boundaries in control parameter space

We can obtain an analytical expression for the stability
boundaries of the homogeneous steady state in control
parameter space (κ, σ) with the help of a linear stabil-
ity analysis. We linearize the system (4) about the ho-
mogeneous steady state U∗

hom for small perturbations δU .
The resulting linear differential equation can be solved
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with the ansatz δU ∼ eΛteikx, which yields the following
characteristic equation:

0 = det
[(

Λ + b (k) 1
−1 ε−1Λ

)
− κA (g̃ (k) − η)

]
, (15)

where b(k) = k2+β2−1 > 0 and g̃ is the Fourier transform
of the integral kernel:

g̃(k) =
∫ ∞

−∞
ker (x) e−ikxdx. (16)

For further analytical progress we need to specify the cou-
pling scheme. Here we will present the calculations for the
activator self-coupling scheme Auu and the exponential
integral kernel. Similar results have been obtained for the
other coupling schemes and integral kernels [69]. The char-
acteristic equation (15) reads for the uu-coupling scheme:

Λ2 + Λ (b (k) − κ (g̃(k) − η)) + ε = 0 (17)

which yields the dispersion relation

Λ± (k) =
1
2

{
− b (k) + κ (g̃(k) − η)

±
√

[b (k) − κ (g̃(k) − η)]2 − 4ε

}
. (18)

For a given control configuration we determine the sta-
bility of the homogeneous steady state by calculating the
maximum real part of Λ+ (k), as Re (Λ+) > Re (Λ−). Let
us assume that a control configuration consisting of the
coupling scheme A, the integral kernel ker(x) with the
coupling range σ0, and the coupling strength κ0 are given.
This configuration destabilizes the homogeneous steady
state if

∃k ∈ R : μ = maxRe (Λ± (k)) > 0. (19)

In Figure 5, the stability of the homogeneous steady state
is calculated numerically for the exponential kernel in the
uu coupling scheme for σ = Δx. The control strength κ is
varied and so is the wavenumber k. Regimes with an un-
stable homogeneous steady state are colored red. There is
a critical control strength κc(σ) = −0.61. For κ < κc

the control destabilizes the homogeneous steady state,
whereas the stability of the homogeneous steady state is
not affected for κ > κc. The critical wave number kc is the
key to the analytical description of the stability border in
control parameter space (κ, σ). The stability border is de-
scribed by the set of control parameters (κ, σ) for which
we can find a k fulfilling:

Re (Λ+ (k)) = 0, (20)
∂k Re (Λ+ (k)) = 0. (21)

Using equation (20) we obtain a closed analytical
expression:

κ =
b (k)

g̃ (k) − η
. (22)

Fig. 5. Stability regimes of the homogeneous steady state. Red
indicates control parameters (κ, σ) destabilizing the homoge-
neous steady state. Control parameters: σ = Δx, exponen-
tial kernel, uu coupling scheme. System parameters: ε = 0.08,
β = 1.2.

Substitution into equation (21) gives:

− 2k + b (k)
∂kg̃ (k)

g̃ (k) − η
= 0. (23)

Using equation (23) and substituting g̃(k) = (1 +k2σ2)−1

and η = 1 for the exponential kernel we find:

kc = 4

√
β2 − 1

σ2
, (24)

which gives us the stability border together with equa-
tion (22):

σ (κ) =
1√−κ −
√

β2 − 1
, (25)

where κ < 1 − β2 as kc ∈ R:

kc = ± 4
√

a

√√−κ −
√

β2 − 1. (26)

Thus, we have found an analytical expression for the sta-
bility boundary in control parameter space (κ, σ). As the
critical wavenumber kc �= 0, the emerging instability is ei-
ther a Turing, a wave, or a salt-and-pepper instability. The
latter can be excluded because of the following asymptotic
behavior for large k:

Re Λ+ (k � 1) = Λ+ (k) = − ε

k2
+ O (

k−4
)

< 0. (27)

This result implies that we cannot find a k0 fulfilling equa-
tion (14) and, thus, we can exclude the salt-and-pepper
instability for this type of kernel and coupling scheme.
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Fig. 6. Examples of the effects of the nonlocal control on
a traveling pulse: space-time plots for (a) pulse suppres-
sion, (b) pulse acceleration, (c) multiple pulse generation.
The control is switched on at t = 0. (a) Exponential ker-
nel, vv-coupling-scheme, (κ, σi) = (0.5, 0275Δx), (b) Mex-
ican hat kernel, uu-coupling-scheme, r = σe/σi = 0.1,
(κ, σi) = (0.5, 2Δx), (c) Exponential kernel, uu-coupling-
scheme, (κ, σi) = (−0.75, 1.5Δx). Other parameters: (ε, β) =
(0.08, 1.20).

4 Simulation of pulses

In this section we summarize our results of the simulation
of equation (4) for a wide range of parameters (strength κ
and range σ of the nonlocal coupling) for the four differ-
ent coupling schemes equation (8) with the three control
kernels presented in equations (10)–(12). Various types of
space-time patterns can arise if a pulse in the uncontrolled
system, i.e., without nonlocal coupling, is used as initial
condition, and then the nonlocal coupling is switched on.

The initial condition is the stable traveling pulse that
forms after an excitation of the uncontrolled system. In
all simulations the boundary conditions are periodic. The
diffusion is implemented with the spectral method [70]. At
time t = 0 the control is switched on. For every param-
eter configuration, the effect of the control term may be
classified as one of the following:

(a) pulse suppression (PS);
(b) pulse acceleration or deceleration;
(c) multiple pulse generation (MP).

Examples of space-time plots for each class are provided
in Figure 6. Figure 6a shows pulse suppression, Figure 6b
shows pulse acceleration, and Figure 6c shows the gener-
ation of a pair of pulses propagating into opposite direc-
tions. Figures 7–9 summarize the results for the different
regimes in the (κ, σ) control parameter plane for the four
coupling schemes and the δ-function kernel (Fig. 7), the
exponential kernel (Fig. 8), and the Mexican hat kernel
(Fig. 9). In addition, the analytically calculated stability
boundary of the homogeneous steady state is plotted as
a white line, and the corresponding instabilities are in-
dicated by white hatched areas: wave instability (diago-
nal hatching), Turing instability (vertical hatching), salt-
and-pepper instability (dotted hatching). For exemplary
space-time plots corresponding to these instabilities, refer
to Figures 3a–3c, respectively.

4.1 Isotropic δ-function kernel

We will now discuss the effects of nonlocal control system-
atically and in detail. First, we consider nonlocal coupling

Fig. 7. Effects of the nonlocal coupling upon pulse propaga-
tion. The four panels summarize the resulting space-time pat-
terns in the control parameter plane of the coupling strength
κ and range σ for the four coupling schemes (uu, uv, vu, vv)
with the δ-function integral kernel equation (10). Dark gray:
multiple pulse generation (MP). Light gray: pulse suppression
(PS). Colors blue to red: pulse acceleration or deceleration (the
pulse velocity c normalized by the uncontrolled velocity c0 is
color coded). Black: pulse speed changes less than 0.5� com-
pared to the uncontrolled pulse. The regions with white hatch-
ing indicate an unstable homogeneous steady state due to one
of the following instabilities: wave instability (diagonal hatch-
ing), salt-and-pepper instability (dotted hatching). System pa-
rameters: (ε, β) = (0.08, 1.2). L = 600, integration timestep
dt = 0.005, spatial resolution dx = L/16 384 ≈ 0.04.

with the δ-function integral kernel equation (10). In the
uu-coupling scheme (Fig. 7, top left), pulse suppression
(PS), cf. Figure 6a, can only be achieved with positive con-
trol strength κ (light gray region in the (κ, σ) plane). This
is in accordance with [52]. For negative control strength
there is a large regime of multiple pulse (MP) generation
(dark gray region in the (κ, σ) plane), cf. Figure 6c. The
border to this regime is well described by the analytically
calculated stability boundary of the homogeneous steady
state. The corresponding instability (diagonal hatching)
is a wave instability, see the exemplary space-time plot in
Figure 3a, and it coincides with the numerically observed
MP regime. The other regions in the (κ, σ) control pa-
rameter space correspond to propagation of the initially
existing pulse with a changed velocity, where the pulse ve-
locity is color coded. For small σ and positive κ the pulse
is accelerated (green), cf. Figure 6b, while for small σ and
negative κ the pulse is slowed down (violet and blue). This
behavior changes when σ is increased, i.e., pulse suppres-
sion is found for positive κ, while pulse acceleration or
multiple pulse generation occurs for negative κ. Only in a
small part of parameter space (small |κ| or small σ) the
pulse velocity remains unchanged (black).

The parameter planes for the uv- (top right) and
vu-coupling schemes (bottom left) are related to each
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Fig. 8. Same as Figure 7 for the exponential integral kernel
equation (11).

Fig. 9. Same as Figure 7 for the Mexican hat integral kernel
equation (12) with r = σe/σi = 0.1. White vertical or diagonal
hatching indicates an unstable homogeneous steady state due
to a Turing or a wave instability, respectively.

other by an approximate reflection symmetry with re-
spect to κ → −κ, at least for not too large σ, and
thus they show qualitatively similar behavior. In con-
trast to uu-coupling, pulse suppression can be achieved
for both negative and positive control strengths. In case
of uv- (vu-)coupling, the stability boundary of the homo-
geneous steady state is described by the vertical straight
line κ(σ) = −0.5 (κ(σ) = 0.5, respectively). The homo-
geneous steady state becomes unstable due to a salt-and-
pepper instability (dotted hatching) to the left or right of
that line, respectively; see the exemplary space-time plot
in Figure 3c. One of the regimes of pulse suppression is

partially covered by the region where the homogeneous
steady state is unstable, and so is the regime of multi-
ple pulse generation, indicating that nonlocal feedback
control can suppress pulses or generate multiple pulses
while destabilizing the homogeneous steady state. Note,
however, that pulse suppression is also possible if the ho-
mogeneous steady state is stable, as in the uu-coupling
scheme. Pulse acceleration (green) and deceleration (vi-
olet and blue) for small coupling range σ is similar to
the uu-coupling scheme in case of uv, and inverted with
respect to κ in the case of vu.

In the vv-coupling scheme pulse suppression is possi-
ble only for positive κ. Control configurations with nega-
tive control strength κ destabilize the homogeneous steady
state by a salt-and-pepper instability, where multiple pulse
generation or pulse acceleration (green) are possible.

4.2 Exponential kernel

Next, we consider nonlocal coupling with the exponen-
tial integral kernel equation (11) (Fig. 8). The regimes
in the control parameter plane for the exponential ker-
nel function are qualitatively similar to the ones of the
isotropic δ-function kernel. Pulse acceleration or deceler-
ation and pulse suppression are found for the same signs
of control strength. In the uu-coupling scheme the border
to the regime of multiple pulse generation is, again, well
described by the analytically calculated stability bound-
ary of the homogeneous steady state (wave instability,
white hatching). For the uv- and vu-coupling scheme the
analytical stability boundary of the homogeneous steady
state is given by κ (σ) = −1 and κ (σ) = 1, respectively,
and a salt-and-pepper instability arises for κ < −1 and
κ > 1, respectively (outside the range plotted). There are
no multiple pulses in the parameter range shown in the
figure. The reflection symmetry of the control parameter
planes of the uv- and vu-coupling schemes with respect
to κ → −κ is much more pronounced, as compared to
the δ-function kernel. In the vv-coupling scheme the ho-
mogeneous steady state is unstable for κ < 0 due to a
salt-and-pepper instability, and the pulse acceleration can
become much stronger than for the δ-function kernel.

4.3 Mexican hat kernel

Finally, we consider nonlocal coupling with the Mexican
hat integral kernel equation (12) (Fig. 9). The Mexican
hat kernel differs from the other kernels, since it is not
positive definite. First of all, the term ηU (x) vanishes, as
η = 0. Second, the second moment of the kernel

M2 =
1
2

∫ ∞

−∞
y2 ker(y)dy

is negative while it is positive for the other kernel func-
tions. This is the reason why the regimes in the control
parameter plane are qualitatively similar as for the pre-
vious kernels if κ is replaced by −κ: the regimes of pulse
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suppression are found for negative coupling strength κ in
the self-coupling schemes uu and vv, and on the opposite
sides of κ in the cross-coupling schemes (uv, vu), compared
to the other kernels, and the same holds for acceleration
and deceleration of pulses. It should be noted that the
instabilities of the homogeneous steady state in the vv-
coupling scheme are of Turing type (see the exemplary
space-time plot in Fig. 3b) for the Mexican hat kernel,
whereas they are of the salt-and-pepper type for the other
kernels. Turing instabilities also arise in the uv-coupling
scheme for κ (σ) > 1.689 (r = 0.1), > 1.366 (r = 0.5),
> 1.317 (r = 0.9), and in the vu-coupling scheme for nega-
tive κ (σ) smaller than the corresponding negative thresh-
old values (not shown in Fig. 9 in the range plotted).

In Figure 9 the ratio of the ranges of the short-range
excitatory (σe) and the long-range inhibitory (σi ≡ σ) in-
teraction r = σe/σi = 0.1 is chosen as r = 0.1. Changing
the ratio r in the interval 0 < r < 1 has only quanti-
tative effects on the (κ, σ) control parameter plane, but
retains the qualitative features. The larger r, the smaller
are the σ values at which the characteristic regions oc-
cur [69]. Thus, for instance, in the uu- and vv-self-coupling
schemes the multiple pulse generation (MP) regimes ex-
tend to smaller σ, and in particular, in the vv-scheme the
MP region, which is not visible in the (κ, σ)-range plot-
ted in Figure 9 for r = 0.1, appears in the upper right
corner for larger r. This MP region needs to be high-
lighted, since it is not associated with a wave instability
of the homogeneous steady states, as for the δ-function
and exponential kernels. The resulting space-time patterns
are more complex than simple wave patterns. Exemplary
space-time plots are provided in Figure 10 for r = 0.5
and r = 0.9. After two counterpropagating periodic wave
trains are nucleated, they eventually lose their stability
and end up in complex spatio-temporal patterns. The
nucleation of periodic self-organized pacemakers is simi-
lar to what has been observed in three-variable excitable
reaction-diffusion systems without nonlocal coupling [71].

4.4 Complex spatio-temporal patterns

In our simulations we have also observed other complex
spatio-temporal patterns. In general, these occur for pa-
rameter values close to the boundary of the multiple pulse
regime. Figure 11 shows examples of spatio-temporal plots
of a blinking traveling pulse (Fig. 11a) and a blinking trav-
eling wave (Fig. 11b), i.e., the propagating pattern is tem-
porally modulated by switching the excitation periodically
on and off. It appears that these patterns might be due to
the interaction of Hopf and wave instabilities.

5 Discussion

It has been shown that nonlocal control is able to accel-
erate, decelerate, and suppress an initially stable travel-
ing pulse for various choices of the integral kernels and
coupling schemes. Nonlocal control is also able to gener-
ate space-time patterns not present without control, e.g.,

Fig. 10. Space-time plots with the Mexican hat kernel, vv-
coupling-scheme, left: r = σe/σi = 0.5, right: r = σe/σi = 0.9.
Other parameters: (κ, σi) = (1, 1.5Δx), (ε, β) = (0.08, 1.2),
L = 1200, integration timestep dt = 0.005, spatial reso-
lution L/16 384. Initial condition: homogeneous steady state
perturbed by uncorrelated random fluctuations.

Turing patterns and wave patterns, or even more com-
plex patterns like salt-and-pepper instabilities or blink-
ing pulses and waves. The control term can destabilize
the homogeneous steady state in certain control param-
eter regimes. The boundaries of these instability regimes
have been analytically described.

In detail we have considered an isotropic δ-function
kernel, an exponential kernel, and a Mexican hat ker-
nel, which combines short range activation with long
range inhibition, and is thus of particular relevance for
neuronal systems. As coupling schemes we have used
diagonal (activator-activator or inhibitor-inhibitor) and
nondiagonal (activator-inhibitor or inhibitor-activator)
coupling. Activator self-coupling always gives rise to wave
instabilities for the parameters investigated. The cross-
coupling schemes and the inhibitor self-coupling scheme
can cause Turing instabilities when using the Mexican hat
control kernel, and salt-and-pepper instabilities when us-
ing the isotropic δ-function or the exponential function.
The spatial period of wave trains and Turing patterns can
be tuned by changing the spatial coupling range of the
control kernel.

The linear stability analysis of the homogeneous steady
state also enables one to classify the type of the emerging
instability as Turing, wave, or salt-and pepper instability.
The analytical predictions for the stability boundaries of
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(a)

(b)

Fig. 11. Spatio-temporal plots of complex space time patterns.
The initial condition is the stable pulse of the uncontrolled
system. (a) Blinking traveling pulse: isotropic δ-function,
vu-coupling scheme, (κ, σ) = (0.48, 1.16Δx). (b) Blinking
traveling wave. Control configuration: exponential function,
vu-coupling scheme, (κ, σ) = (0.98, 1.98Δx). Parameters:
(ε, β) = (0.08, 1.2).

the homogeneous steady state are in good agreement with
the simulation results of the nonlinear system. In the acti-
vator self-coupling scheme, the boundary of the regime of
multiple pulse generation coincides precisely with the ana-
lytically calculated stability boundary of the homogeneous
steady state. Care must, however, be taken for the other
coupling schemes. There are control configurations that
suppress or support stable pulses in the first place, but will
eventually after long transient times destabilize the homo-
geneous steady state leading to the generation of pulses.
Therefore in simulations sufficiently long simulation times
must be used.

In conclusion, a propagating pulse may be transformed
into other spatio-temporal patterns by the nonlocal cou-
pling, depending upon the parameters of the nonlocal
control term. Since the obtained patterns depend sen-
sitively upon these parameters, the choice of these pa-
rameters (coupling strength κ, coupling range σ, coupling
scheme, and nonlocal coupling kernel) represents a con-
venient way of control of pulse propagation. We have
systematically scanned the (σ, κ)-plane for each of the four
coupling schemes (uu, uv, vu, vv) and different coupling

kernels. Thus we have provided an exhaustive picture how
nonlocal coupling affects pulse propagation in an excitable
medium. For example, if pulse suppression is desired, the
parameters should be chosen from the region denoted
by PS in Figures 7–9; and, analogously, if pulse accel-
eration or deceleration is desired (color coded regions),
etc. It should also be noted from the figures that multi-
stability between these different patterns can occur, e.g.,
between accelerated pulses (green) and salt-and-pepper
instabilities (white dotted hatching), or between multi-
ple pulse generation (dark grey, MP) and salt-and-pepper
instabilities in Figure 7, bottom right panel.

This work was supported by DFG in the framework of SFB
910 “Control of self-organizing nonlinear systems”. Helpful
discussions with Julien Siebert are gratefully acknowledged.
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