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Abstract. With the recent advances of experimental techniques, the nonlinear ultrafast optical response of
metal nano-objects can now be investigated both on ensembles and on single nanoparticles. Its connection
with the metal electronic and lattice kinetics is studied on the basis of a model describing the wavelength
and time-dependent modifications of the object material dielectric function. Its application is illustrated in
the case of single silver nanospheres and gold nanorods, as well as on ensembles of noble metal nanoparticles
and metal-semiconductor nano-hybrids. This quantitative analysis also permits to elucidate the physical
mechanisms at the origin of ultrafast nonlinearities in confined metals at different timescales.

1 Introduction

Synthesis of small particles with dimensions decreasing
down to few nanometers and the simultaneous appear-
ance of original physical and chemical effects has led to
the investigation of a wide variety of different nanosys-
tems, playing with the shape, size, composition and inter-
nal structure of nano-objects and their interactions with
their environment. Fundamental studies on different ma-
terials have allowed to determine both experimentally and
theoretically by which mechanisms size reduction affects
physical properties. In the case of metal nanoparticles, the
most striking effect of spatial confinement is the appear-
ance of the localized surface plasmon resonance (SPR),
deeply affecting their color [1–5]. This resonance, associ-
ated to a collective electron motion, results in a strong
enhancement and spatial localization of the electromag-
netic fields inside and around metal nanoparticles.

Additionally, confinement to the nanometric scale im-
pacts the internal dynamical processes of nanosystems.
This is in particular the case for the dynamics of elec-
trons after an initial excitation (internal electron gas
thermalization and electron energy loss by interactions
with phonons [6–12]). Other phenomena, such as the
ionic lattice mechanical response (phonon acoustic vibra-
tions) [13–16] or thermal energy transfer processes (heat
dissipation to the environment) [17] are also modified by
size reduction [18,19]. These physical processes lead to a
modification of some sensitive physical parameters (e.g.,
electronic energy distribution, nano-object shape and vol-
ume...), having as a direct consequence a variation of the
nano-object dielectric functions. This in turn directly af-
fects the optical response of nanoparticles (e.g., their light
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Fig. 1. Pump-probe optical spectroscopy setup for single (a)
and ensemble (b) experiments. (c) Typical timescales of dy-
namical processes under investigation.

absorption or scattering) thus yielding the possibility of
monitoring and characterizing ultrafast processes by mea-
suring its time evolution by time-resolved optical spec-
troscopy [7,20]. This experimental approach, which has
been initially developed for the investigation of internal
dynamics of bulk metals [6,21,22], has been largely ex-
tended in the last two decades to the study of metal
nanosystems through ensemble [7,15,23–25] and single
nanoparticle [26–34] experiments (Figs. 1a and 1b). Many
physical processes have been addressed by this method,
such as light excitation-electronic motion coupling and
coherence loss [35], SPR polarization decay [36,37],
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electron-electron scattering and electron-lattice energy
transfer [11,12,15,20,27,34,38], lattice acoustic vibra-
tions and nanoparticle cooling [8,15,18,26,28,29,31,39–47],
opening the possibility of elucidating fundamental mech-
anisms governing acoustic mode damping or heat transfer
at the metal-matrix interface [48–52] (Fig. 1c). These in-
vestigations have also helped understanding the physical
origins of the optical nonlinearities in metal nanoparticles
and discriminating the effects of different electronic con-
tributions (e.g. light-induced SPR broadening, frequency
shift and increased electron-surface scattering) [53].

The accurate study of metal nanoparticle internal dy-
namics through the measurement of their time-resolved
optical response requires detailed modeling of the physi-
cal processes involved, which is the main scope of this col-
loquium paper. In particular, a quantitative model must
include the impact of the out-of-equilibrium conditions
(electron excitation and subsequent lattice heating) on
the electron energy distribution, the induced modifica-
tions of the metal dielectric function, and their influence
on the nanoparticle optical response, taking plasmonic ef-
fects into account.

The optical response of a small-sized object is
characterized by its absorption and scattering cross-
sections, σabs and σsca, defined as the ratio between ab-
sorbed/scattered powers and the intensity of the light
beam incident on the particle, extinction cross-section σext

being the sum of σabs and σsca [54]. Ultrafast excitation of
the nanoparticle leads to a time-dependent modification of
σext, which is investigated by time-resolved spectroscopy.
Experiments with femtosecond pump-probe setup carried
out both on ensembles and on single metal nano-objects
(Figs. 1a and 1b) followed analogous experimental ap-
proaches [7,15]. They consist in exciting the nanoparticles
with a first laser pulse (pump) and monitoring the sub-
sequent time-dependent modification of their absorption
and/or scattering by measuring the transmission (or re-
flection) of a second time-delayed pulse (probe). By ne-
glecting the influence of environment heating [18] and
assuming weak induced changes in the nanoparticle, the
Δσext variation, at probe wavelength λ and pump-probe
time delay t, can thus be expressed as [20]:

Δσext (λ, t) =
∂σext

∂ε1
(λ)Δε1 (λ, t) +

∂σext

∂ε2
(λ) Δε2 (λ, t)

= a1 (λ) Δε1 (λ, t) + a2 (λ) Δε2 (λ, t) (1)

a1,2 being the stationary spectral-dependent plasmonic-
enhanced σext derivatives and Δε1,2 the dynamical
spectral- and time-dependent pump-induced variations of
the nanoparticle real and imaginary dielectric functions.
Time-resolved signals result from a combination (Eq. (1))
of the dynamical physical effects under study, which in-
duce variations Δε1,2 of dielectric functions, and their op-
tical detection, with a spectral sensitivity given by a1,2.

2 Dielectric function of metal nanoparticles

The dielectric functions ε1,2(λ) describe the interaction
of the electrons with an incident electromagnetic field of

wavelength λ. In the case of noble metals, they can be
split in two contributions, corresponding to interaction of
the field with electrons in the conduction band (Drude
term) and to photoexcited transitions of bound electrons
from inner electronic bands (interband contribution), the
total dielectric function ε(λ) being thus given by ε(λ) =
1 + [χD(λ) + χib(λ)] = εD(λ) + εib(λ) − 1, χD,ib(λ) being
the Drude and interband susceptibilities of the medium.

Electrons in the conduction band can be approximated
as a quasi-free electron gas, their contribution to the di-
electric function being [55]:

εD (λ) = 1 − λ2

λ2
p

1
1 + iλτ−1

n

/
(2πc)

εD
1 (λ) ≈ 1 − λ2

λ2
p

, εD
2 (λ) ≈ λ3

2πcλ2
p

τ−1
n (2)

where εD
1 and εD

2 are the real and imaginary parts of
the metal dielectric functions, respectively, and λp is the
plasma wavelength (λp = 2πc

√
meε0/nee2, ne being the

density of conduction electrons, me and e the electron ef-
fective mass and electric charge, c the speed of light in
vacuum and ε0 the vacuum permittivity). As the momen-
tum of a photon is negligibly small, photon absorption by
a conduction electron requires the implication of a third
particle, such as an auxiliary electron, a phonon of the
ionic lattice or a defect in order to satisfy energy and mo-
mentum conservation. The imaginary part of the Drude
term reflects these scattering processes, with different con-
tributions dependent on the incoming photon wavelength
λ and on the electronic and lattice temperatures (Te and
TL), the characteristic optical scattering rate τ−1

n for a
nanoparticle being:

τ−1
n (λ, Te, TL) = τ−1

e−ph (λ, Te, TL) + τ−1
e−e (λ, Te)

+ τ−1
e−S (λ, Te) (3)

electron-defect scattering being neglected here. The domi-
nant contribution to τ−1

n comes from the electron-phonon
scattering term τ−1

e−ph [56–58]. It has been computed mod-
eling electron-phonon interaction via a deformation poten-
tial, which connects the zero energy at the bottom of the
conduction band to the lattice periodic deformation in-
duced by phonon vibrations. As the energy of the phonons
(a few meV) is small compared to optical photons (eV),
they significantly modify only the momentum of excited
electrons.

Accordingly, τ−1
e−e describes the electron-electron scat-

tering assisted photon-absorption rate. The auxiliary elec-
tron again enhances the light absorption by providing
extra momentum. Only umklapp processes (electron-
electron scattering by exchange of a vector in the recipro-
cal lattice) affect this term, whose contribution to τ−1

n is
however small [59].

The last term τ−1
e−S is specific of confined systems and

becomes relevant only for nanoparticles with sizes com-
parable or smaller than the conduction electron free path
(∼30 nm) [1,2]. This scattering term is a consequence of
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electron confinement [1,60] and thus depends on nanopar-
ticle size and geometry. For a sphere or a symmetrical
elongated nano-object (as a spheroid or a nanorod):

τ−1
e−S (λ, Te) = 2g (λ, Te) vF /Deq (4)

where vF is the conduction electron velocity at Fermi en-
ergy (1.4 × 106 m/s for Au and Ag) and Deq =

√
Snp/π

is the nano-object equivalent diameter (where Snp is the
nanoparticle surface) [61,62]. In a classical picture, τ−1

e−S
describes optical absorption assisted by electron-surface
scattering. More quantum mechanically, it is associated
to allowed optical transitions between confined states, the
wave vector k being no longer a good quantum num-
ber [1,60,63]. The amplitude of this effect, for electrons
confined in an infinite spherical potential (surface con-
finement) and not too small particles (so that conduction
band states form a quasi-continuum), is given by [53,64]:

g (λ, Te) =
λ

hcE2
F

∞∫

0

E3/2
√

E + hc/λf (E, Te)

× [1 − f (E + hc/λ, Te)] dE, (5)

where EF is the Fermi energy and f(E, Te) the
temperature-dependent electron level occupation num-
ber. For noble metals, g ∼ 0.7 at room temperature in
the optical domain. This value is consistent with that
measured in recent experiments, accounting for the ex-
plicit size dependence of τ−1

e−S (Eq. (4)), but also for
possible size-dependent modifications of τ−1

e−ph and τ−1
e−e

(Eq. (3)) [61,65,66].
The term εib(λ) is associated to interband transi-

tions of electrons from low energy bands (e.g. localized
d-band) to higher energy ones, corresponding to quasi-
free electron states. In the case of noble metals, d-states
to conduction band transition thresholds lie at approx-
imately 650 and 320 nm for gold and silver, respec-
tively [67,68]. For wavelengths shorter than these values,
absorption of one photon thus promotes an electron into
the conduction band. The interband transition contribu-
tion to the stationary absorption spectrum can be com-
puted through theoretical models starting from the band
structure [69–72]. In the case of Au, interband absorp-
tion in the visible range mainly involves electrons localized
around the L and X points of the Brillouin zone [67,73].
In the vicinity of the L point, visible light can be resonant
with transitions both from occupied states in the d-bands
to p-band quasi-free states (L5++6+ → L4−) and from
p-band to s-band (L4− → L4+), while a d-band to p-band
transition (X7+ → X6−) dominates around the X point. In
the case of Ag, only the two transitions around the L point
can be excited by visible photons [68,74]. Band energy
structure can be directly connected to the εib

2 absorption
spectrum by integrating, for all k values in the Brillouin
zone, the probability of a transition from occupied to un-
occupied states with an energy separation corresponding
to the incoming photon energy hc/λ. The probability of
transitions from bands i to j is given by the joint density

of states Ji→j (J−1 m−3) [72]:

Ji→j (λ) =

Eij
max∫

Eij
min

Di→j (E, λ) [fi (E) − fj (E + hc/λ)]dE

(6)
where fi,j are the occupation numbers of bands i and j
and Di→j is the energy dependent joint density of states
for a transition with wavelength λ. Integration limits are
specifically chosen so as to include all possible transitions
from i to j band. By summing over all resonant inter-
band transitions, the imaginary part of the Au dielectric
constant is given by [69–72,75]:

εib
2 (λ) =

e2λ2

ε0m2
ec

2

[
AX

d→pJ
X
d→p (λ)

+ AL
d→pJ

L
d→p (λ) + AL

p→sJ
L
p→s (λ)

]
(7)

the one for Ag having a similar expression, with no X
point contribution. AX,L

i→j are the squares of the momen-
tum operator matrix element describing the transition
strengths. Their determination can be performed by com-
bining an experimentally measured ε2(λ) dataset and the
energy band structure (determined either theoretically or
experimentally). The fit of ε2(λ) by the sum of interband
(Eqs. (6) and (7)) and Drude (Eq. (2), dominant in the
infrared range and negligible for visible light) contribu-
tions allows estimation of AX,L

i→j values. This analysis is
essential for quantitative computations of the transient
time-resolved optical response Δε1(λ, t) and Δε2(λ, t) (see
Sect. 5.1 below).

In the case of Au, the most common dielectric constant
table is the one measured by Johnson and Christy [76]. It
is still widely adopted for modeling optical properties of
Au nanosystems as it predicts their spectral characteris-
tics (SPR position and width) reasonably well, which is
also the case for more recently measured sets [77–79]. For
calculating the joint density of states, the Christensen and
Seraphin [67] Au band structure has been most tradition-
ally employed. In this work, the fit is based on the more
recent relativistic band structure calculations by Rangel
et al. [80], which give comparable results (Fig. 2a). The
effective masses, describing the energy over k dependence,
are computed from the band structure, while the energy
gaps at the center of L and X Brillouin zone points are
left as free parameters [73], as their precise experimen-
tal determination is difficult and the computed values
sensitively depend on the model considered (e.g. choice
of exchange-correlation potential in DFT theory) [80].
Note that, in the case of Au, the fit extends only in
the visible region from 1 to 3.8 eV, where the only rel-
evant contributions come from the transitions specified
above. For a fit over a more extended energy range, addi-
tional interband transitions must be considered. In the
case of Ag, experimental tables both by Johnson and
Christy [76] and Palik [81] have been commonly used, the
latter better reproducing experimentally measured SPR
positions (mainly set by εib

1 values), the former being more
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Fig. 2. Dots: experimental bulk ε2 dielectric functions of Au
(a) and Ag (b) [76]. Lines: fits taking into account interband
contributions around the L and X points of the Brillouin zone
and Drude term (see main text). Fit parameters are summa-
rized in Table 1.

compatible for resonance widths (εib
2 ) [82]. Recent exper-

imental investigations failed to provide Ag dielectric con-
stant sets better reproducing nanoparticle plasmon res-
onances, probably because of the sensitivity of dielectric
constants to the quality and crystallinity of silver samples.
Fits of Johnson and Christy constants with the effective
masses derived from the energy band structure by Chris-
tensen for Ag [68] over the range from 0.6 to 4.5 eV will be
used in the following (Fig. 2b). Values of effective masses
used for the fits and the deduced optical gaps and AX,L

i→j
matrix elements are summarized in Table 1.

3 Optical absorption of metal nanoparticles

To determine a1,2 values (Eq. (1)), the σext extinction
cross-section of a matrix-embedded nano-object and its
dependence on ε1,2 must be computed. For dimensions
much smaller than incident light wavelength, the electro-

magnetic response of a nanoparticle can be approximated
as the one of a dipole p(λ) at the center of the object
aligned with the external oscillating electric field E(λ)
(dipolar approximation). In this case:

p (λ) = ε0 εm α̃ (λ) E (λ) (8)

where α̃ is the linear polarizability of the nano-object and
εm the dimensionless matrix dielectric constant. In the
general case of a small elongated nanoparticle, as an el-
lipsoid or a spheroid (i.e. ellipsoid with two axes of equal
length), the linear polarizability takes the form [1,5,54]:

α̃ (λ) =
Vnp

Li

ε (λ) − εm

ε (λ) + [(1 − Li)/Li] εm
(9)

where Vnp = (4π/3)abc is the nanoparticle volume (a, b
and c being the semi-axes of the ellipsoid), and Li is a
factor depending on particle geometry and incident light
polarization. In the case of a nanosphere, Li = 1/3 in-
dependently of orientation. For a prolate spheroid (i.e.
elongated cigar-like nanoparticle with a > b = c) and
light polarization parallel to its long axis (x direction), Li

writes:

Lx =
1 − e2

e2

[
−1 +

1
2e

ln
(

1 + e

1 − e

)]
(10)

with eccentricity e2 = 1 − (b/a)2 and Ly = Lz =
(1 − Lx)/2. Within the small size approximation, the ex-
tinction cross-section of a nano-object can be identified
with its absorption cross-section, the scattering one be-
coming negligible (as it scales with V 2

np, while absorption
is proportional to Vnp) [54]. Absorption being proportional
to the imaginary part of the polarizability, one obtains:

σext (λ) ≈ σabs (λ) =
2π

λ

√
εm Im [α̃ (λ)]

=
2πV ε

3/2
m

λL2
i

ε2 (λ)
[ε1 (λ) + (1 − Li)/Liεm]2 + ε2

2 (λ)
.

(11)

For weak or weakly dispersed ε2, vanishing of the first
term in the denominator corresponds to a resonant en-
hancement of the absorption. By combining equations (2)
and (11), the surface plasmon resonance condition can be
expressed as [39,83]:

λSPR = λp

√

εib
1 (λSPR) +

1 − Li

Li
εm. (12)

For gold nanospheres, the SPR lies in the green part of the
spectrum, at wavelengths ranging from 500 to 540 nm de-
pending on the environment (through the dielectric con-
stant εm, Eq. (12)). It thus overlaps the domain of in-
terband transitions (Fig. 2a), whose threshold is around
λib ≈ 650 nm. This is illustrated by Figure 3a, showing
the extinction cross-section of a 30 nm Au nanosphere
in water (εm = 1.77) computed in the dipolar approx-
imation (dotted line in Fig. 3a). To take into account
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Table 1. Effective masses (in unity of electron mass m0), band energies and relative oscillator strengths ηX,L
i→j = AX,L

i→j/A
L
d→p at

points L and X of the Brillouin zone for Au and Ag (band symmetry labels from Refs. [68,73]). Effective masses were computed
from Au [80] and Ag [68] band structures. Energy positions with respect to the Fermi energy were deduced from the fit of the
corresponding dielectric constants [76] (see Fig. 2). Drude quasi-free electron parameters are also reported for the two metals.

Band ‖ Mass (m0) ⊥ Mass (m0) Energy (eV) ηX,L
i→j

Au L Point

4+ (s) +0.101 –6.797 +3.414
ηL

p→s = 0.272
4− (p) –0.157 +0.146 –1.368

ηL
d→p = 1

5+ + 6+ (d) –1.326 –0.499 –2.055

Au X Point

6− (p) –0.125 +0.166 +0.573
ηX

d→p = 0.320
7+ (d) –0.944 –0.446 –1.767

Ag L Point

4+ (s) +0.128 +5.160 +3.684
ηL

p→s = 0.478
4− (p) –0.172 +0.320 –0.310

ηL
d→p = 1

5+ + 6+ (d) –2.075 –2.580 –3.942

Drude contribution

Au λp = 138 nm, �τ−1
n = 20 meV, EF = 5.49 eV

Ag λp = 138 nm, �τ−1
n = 67 meV, EF = 5.53 eV

confinement effects on the dielectric constants, the bulk
εD
2 (λ) contribution (Eqs. (2) to (4) with Deq → ∞) was

subtracted to the experimental bulk Au dielectric con-
stant values and replaced by its Deq dependent expres-
sion [84], using g = 0.7. Exact calculations of σext(λ)
using Mie theory [54] give a more precise prediction of
the extinction spectrum (Fig. 3a, solid line). A slight dif-
ference appears between the two spectra, the discrepancy
being expected to increase for larger dimensions. a1 and a2

derivative profiles (Fig. 3a, dashed and dash-dotted line,
respectively), computed by numerical derivation of the
Mie theory spectrum (very similar profiles are obtained
within dipolar approximation by derivating Eq. (11) with
respect to ε1,2), are visibly enhanced around λSPR, thus
increasing the amplitude of time-resolved transient opti-
cal signals Δσext around λSPR (Eq. (1)). In the case of
a 30 nm Ag nanosphere (Fig. 3b) a larger shift (ΔλSPR ≈
2 and 10 nm for 30 nm Au and Ag nanospheres, re-
spectively) and broadening appear when comparing dipo-
lar approximation (dotted line) and Mie theory model-
ing (solid line). This results from the higher polarizability
of the Ag sphere at λSPR (Eq. (9)), enhancing both ra-
diative damping and retardation effects (responsible for
the resonance broadening and red-shift, respectively [2]).
The plasmon resonance of an elongated symmetrical ob-
ject, as a nanorod or a prolate spheroid with incoming
light polarized parallel to the main axis (Fig. 3c), sensi-
tively shifts with increasing aspect ratio η = a/b [3,85,86].
This provides a convenient way of tuning the Au reso-
nance out of interband transitions, thus narrowing the res-
onance linewidth [62,87–89]. As for spherical nano-objects,
the spectrum computed in dipolar approximation (Fig. 3c,
dotted line, with 2a = 43 nm and η = 3.58) can be
compared to the one given by an exact theory (extension
of Mie theory for spheroids), which has been developed
by solving Maxwell’s equations in spheroidal coordinates

(Fig. 3c, solid line) [90]. For nano-objects with arbitrary
shapes, optical properties can be computed numerically
using different approaches, one of the most common be-
ing Finite Element Method (Fig. 3d) [91]. When applied
to computing the optical response of a gold nanorod, nu-
merical calculations show the same behavior as for pro-
late spheroids, i.e., for light parallel to its long axis, SPR
shift to higher wavelengths with increasing aspect ratio
(Fig. 3d), its derivatives a1 and a2 also being centered at
the nanorod SPR.

In conclusion, for all considered shapes and metals,
the localized surface plasmon resonance induced by elec-
tron dielectric confinement leads to a strong enhancement
of both the linear extinction spectrum and its deriva-
tives ruling the amplitude of the out-of-equilibrium non-
linear response (Eq. (1)). The dispersion-like a1 profile
(red dashed lines) always crosses the horizontal axis near
λSPR. Its spectral dependence has the same profile as
the σext(λ) direct derivative with respect to λ, as de-
duced from equations (2) and (11) by neglecting spectral
dispersion of the εib

1 contribution, which yields a1 (λ) ≈
∂σext/∂λ|λ

(−λ2
p/2λ

)
. The a1 spectral derivative is thus

proportional to both the amplitude of the SPR and its
quality factor [32].

4 Ultrafast electron kinetics

Differential Δε1,2(λ, t) terms in equation (1) reflect the dy-
namics of the system, i.e. its temporal response after an
initial ultrafast excitation by the pump pulse. After discus-
sion of energy injection into the system and relaxation via
electronic interactions, we will consider in Section 5 how
this kinetics affects the dielectric function of the metal
nanoparticles, i.e. induces the transient Δε1,2(λ, t) optical
response.
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Fig. 3. Computed extinction cross-sections and their a1 and
a2 derivatives for a 30 nm diameter Au sphere (a), 30 nm di-
ameter Ag sphere (b), 43× 12 nm Au prolate spheroid (c) and
43 × 12 nm Au nanorod (d). The vertical lines indicate λSPR.
Upper panels: full lines correspond to exact calculations based
on Mie theory ((a) and (b)), on its extension in spheroidal coor-
dinates (c) and on FEM computing (d). For comparison, black
dotted lines are calculations based on dipolar approximation.
Lower panels: red dashed (blue dash-dotted) lines represent a1

(a2) terms, obtained by ε1 (ε2) derivation of extinction cross-
sections. The electron-surface scattering parameter g is chosen
equal to 0.7 (Eq. (4)).

The most adapted physical quantity to describe the
electronic dynamics in a metal nanosystem is the time-
and energy-dependent distribution function f(E, t) of
electron energy states. As in bulk materials, its vari-
ation with time is described by the Boltzmann equa-
tion. Assuming an isotropic parabolic conduction band it
writes [6,22,92]:

df (E, t)
dt

=
∂f (E, t)

∂t

∣
∣∣
∣
exc

+
∂f (E, t)

∂t

∣
∣∣
∣
e−e

+
∂f (E, t)

∂t

∣
∣∣
∣
e−ph

(13)
where the different terms account for electron occupation
number evolution by initial pulse excitation, internal ther-
malization by electron-electron scattering and electron
energy transfer to the lattice through electron-phonon
coupling, respectively. The electron energy in metal

nanoparticles can also be directly dumped to the sur-
rounding matrix (solvent or glass). However, this process
will not be considered here as it is slower and only relevant
for small nanoparticles and strong excitations [93,94].

Equation (13) is solved with an initial condition corre-
sponding to thermalized conduction electrons (at a tem-
perature T0 of typically 300 K), f(E, t = −∞) being thus
described by a Fermi-Dirac distribution, with states oc-
cupied from the bottom of the energy band to approxi-
mately Fermi energy (EF ≈ 5.5 eV for Au and Ag). Ne-
glecting coherent electron-light coupling that takes place
on a very short timescale [6,35,95], the excitation can be
described in terms of quasi-free electron absorption. For
pump pulse energies lower than the interband transition
threshold (λpump > λib), electron-hole pairs are gener-
ated only in the conduction band. Electrons are thus de-
scribed by an athermal distribution, with a small frac-
tion of electrons having absorbed a photon promoted to
an energy exceeding EF , most of the electrons still oc-
cupying initial unperturbed states. The first term in the
Boltzmann equation (Eq. (13)) describes this excitation
process accounting for the specific temporal dependence
of the excitation pulse (typical durations of 20 to 100 fs,
see Fig. 1c) [6,22]. Even though at this stage an electronic
temperature cannot be defined, the excited electron dis-
tribution being strongly athermal, the amplitude of ex-
citation can be quantified by an equivalent excited elec-
tron temperature Texc (= T0 + ΔTexc), corresponding to
the equilibrium temperature of an electron gas with the
same total energy as the excited system (ΔTexc commonly
being in the 10–1000 K range). In the case of interband
excitation (λpump < λib), the total number of conduction
electrons is no longer constant. Nevertheless, the inter-
band electron-hole pairs recombine within a few tens of
femtoseconds via Auger processes [96,97].

After excitation, the electron gas thermalizes through
internal electron-electron interactions (second term in
Eq. (13)). This process is described by a screened Coulomb
interaction potential, containing a sum over all possi-
ble two-electron scattering processes satisfying energy
and momentum conservation [6,22,98]. Although a di-
rect single electron-electron scattering process is very fast
(∼10 fs), a large number of them are required for es-
tablishing a thermalized electronic temperature. In the
low perturbation regime, typical internal thermalization
timescales of bulk materials and large nanoparticles are
of the order of 500 fs and 350 fs for gold and silver re-
spectively, and are shown to decrease for small nanopar-
ticles (D < 5 nm), an effect ascribed to the reduction of
Coulomb screening close to the surfaces [6,11,20].

Concomitantly with internal thermalization, the elec-
tron excess energy is transferred from the electron gas to
the ionic lattice via electron-phonon scattering. The corre-
sponding contribution (last term in Eq. (13)) is obtained
by an integration of the e-ph coupling matrix element
over all available electronic and vibrational states satisfy-
ing energy and momentum conservation [6,92]. As in the
case of phonon-assisted photon absorption (τ−1

e−ph term in
Eq. (3)), a deformation potential coupling is assumed to
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compute the matrix element. The timescale for electron-
lattice thermalization by electron-phonon scattering pro-
cesses is typically in the picosecond range and depends
on the excitation conditions [38]. In the low perturbation
regime, it is longer in bulk gold (1.15 ps) than in silver
(850 fs) and is also shown to decrease for small nanoparti-
cles (D < 20 nm) [6,12]. It should be underlined that the
Boltzmann equation (Eq. (13)), which was first introduced
and applied to compute the dynamics of bulk materials,
can still be used in a first approximation to describe the
kinetics of not too small nanoparticles (D > 2–3 nm), pro-
vided a size-dependent correction to electron-electron and
electron-phonon coupling rates is taken into account.

A simple description of electron gas and lattice dynam-
ics after electron internal thermalization is given by the
two temperature model (TTM), which assumes that both
conduction electrons and lattice phonons are internally
thermalized and their interaction strength is determined
by a constant coupling term G [57,99–102]. Under these
assumptions, Te and TL being the temperatures of inter-
nally thermalized electrons and lattice, respectively (con-
sidered homogeneous over the metal sample), and Ce(Te)
and CL their specific heats par unit volume, the following
rate equation system applies:

Ce (Te)
∂Te

∂t
= −G (Te − TL)

CL
∂TL

∂t
= G (Te − TL) (14)

with Ce(Te) = aTe, and a = 65 J m−3 K−2 for Ag and
Au [55]. This expression of Ce is valid in noble metals
as long as electronic heating only involves quasi-free con-
duction band electrons, i.e., for not too strong excitation
(ΔTexc � 3000 K). In this regime, the TTM equations
(Eq. (14)) are a direct consequence of the Boltzmann equa-
tion (Eq. (13)), and are obtained by computing the elec-
tron energy loss rate in the thermalized regime [102].

Analytic solutions show that the final equilibrium tem-
perature of the metal, common to the electron gas and the
lattice, is given by Teq ≈ T0+(T 2

exc − T 2
0 )/(2CL/a), which

is in general much smaller than Texc, as CL � Ce (sub-
sequent energy transfer to the environment is neglected
here) [101]. For weak electron heating, i.e. ΔTexc � T0,
both electron and lattice temperatures exponentially con-
verge to Teq:

Te (t) ≈ Teq + (Texc − Teq) exp
(
− t

τe−L

)

TL (t) ≈ Teq − (Teq − T0) exp
(
− t

τe−L

)
(15)

with a decay rate τ−1
e−L ≈ G/aT0 proportional to the

electron-phonon coupling constant G. For stronger excita-
tion, the Te dependence of Ce leads to a non-exponential
decay of Te and to slowing down of the initial cool-
ing dynamics, an exponential dependence being recov-
ered when the electron gas cools down [101]. The ex-
cess energy density per unit volume of the electron gas

Δue(t) = a/2[T 2
e − T 2

0 ] follows the Te time-evolution, and
similarly decreases with time after ultrafast excitation.

As the electron-lattice equilibrium temperature Teq is
higher than the one of the environment (T0), energy is
subsequently transferred to the external matrix through
the nanoparticle interface [17,18,103]. The heat transfer
out of the nanoparticles (typical timescale 10 to 500 ps,
see Fig. 1c) is limited by the thermal resistance at the in-
terface and by the thermal diffusion inside the matrix [17].
The relative contributions of these two effects depend on
the size of the nanosystems, the effect of interfacial ther-
mal resistance increasing with higher surface-to-volume
ratios [18,103–106].

It should be noted that less computationally cumber-
some numerical models are commonly used as an alter-
native to the approach presented here, i.e. the solution
of equation (13) by calculations of all the Boltzmann
equation terms. They are based on simplification of some
interaction terms (e.g., the e–e one) with the use of
a phenomenological description [107,108], or on an ex-
tension of the TTM taking into account non thermal
electrons [109,110].

5 Time-dependent metal dielectric
function change

The ultrafast optical response of a metal nanoparticle is
ruled by the transient variations of its dielectric function
Δε1,2. These are a consequence of the modification of the
electron distribution, which induces a change in the inter-
band term Δεib

1,2 (dominant on the short timescale) and
smaller modifications to the Drude term, and of the con-
comitant heating of the lattice (this effect being more sig-
nificant on longer timescales).

5.1 Electronic contribution

Modifications Δf of electron occupation numbers
(Eq. (13)) directly reflect into a change of interband di-
electric function εib. As in the case of the stationary ab-
sorption spectra, deduction of Δεib

1,2 from Δf can be done
using Au and Ag band structure models of Rosei [72] after
integrating Δf over the joint density of states (Eqs. (6)
and (7) and Tab. 1). The imaginary part Δεib

2 (λ, t) is first
computed as a function of the probe wavelength λ for
each time delay t after pump excitation (corresponding to
temperature increase ΔTexc). The real part Δεib

1 (λ, t) is
subsequently deduced by Kramers-Kronig integral trans-
formation (transient Δε2(λ, t) in optical pump-probe ex-
periments is different from zero only around the interband
transition threshold, making integration possible). As an
example, Δf for bulk Au is shown in the inset of Figure 4a
for three different delays t = 100 fs, 500 fs and 3 ps after an
initial 50 fs pump pulse at λpump = 850 nm and an equiva-
lent electron temperature increase ΔTexc = 100 K. As ex-
pected, the pump pulse directly promotes electrons from
occupied states with energy lower than the Fermi level to
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Fig. 4. Computed contributions to interband dielectric function changes, Δεib
1,2(λ, t), in Au following excitation by a 50 fs

ultrafast pump pulse corresponding to an electron temperature increase ΔTexc = 100 K and λpump = 850 nm. Solid, dashed and
dotted lines correspond to 100 fs, 500 fs and 3 ps delay after excitation, respectively. (a) and (b) show modifications due to electron
heating (by changes of Δf), (c) and (d) the ones following lattice heating (by changes of the interband transition threshold). The
inset in (a) reports the Δf distribution for the different delays. The three different interband transition contributions (Eq. (7))
to Δεib

2 at 500 fs delay are separately plotted in the inset in (b). ΔTe (equal to 94 K, 71 K and 11 K for 100 fs, 500 fs and 3 ps
delay, respectively) and ΔTL (0.06 K, 0.39 K and 0.82 K) computed by the TTM are reported in the inset of (c).

unoccupied states at energy hc/λpump above, modifying
the occupation number of states in a broad energy band
ranging from EF − hc/λpump to EF + hc/λpump (solid
line in the inset Fig. 4a, corresponding to t = 100 fs). Fast
internal thermalization progressively leads to build up of
a narrower Δf distribution centered around EF (dashed
line, t = 500 fs). Afterwards, the electron energy loss by
electron-phonon coupling induces a progressive vanishing
of Δf (dotted line, t = 3 ps). The transient Δεib

1 and Δεib
2

spectra (Figs. 4a and 4b, respectively) reveal the gradual
smearing out and narrowing of Δf around the Fermi en-
ergy. While they are flat for short delays, reflecting Δf
broadening, they become sharper around the interband
transition wavelengths during internal thermalization, be-
fore decreasing. Two main peaks are visible (Fig. 4b), cor-
responding to the d → p (X) and d → p (L) transitions
(see inset of Fig. 4b), the L point giving, as expected, the
largest contribution to the transient signal (Eq. (7) and
Tab. 1).

Electron excitation also affects the Drude contribu-
tion to dielectric functions through a transient term ΔεD

1,2.
This is due to the dependence on the electron distribution
(which depends in turn on temperature Te) of the rate of
all scattering processes (τ−1

n in Eqs. (2) and (3)). As εD
1 is

almost independent of τ−1
n (Eq. (2)), the only significant

transient contribution originates from the imaginary part

and is given by:

ΔεD
2 ≈ λ3

2πcλ2
p

Δτ−1
n . (16)

Variations of τ−1
n with electron temperature are dom-

inated by the electron-electron scattering term Δτ−1
e−e,

whose Te dependence can be expressed as [59,102]:

Δτ−1
e−e

τ−1
e−e

(λ, Te) ≈
(

2πkBλ

hc

)2 (
T 2

e − T 2
0

)
. (17)

For a weak excitation, the ΔεD
2 contribution (Fig. 5a, with

�τ−1
e−e ≈ 15 meV [56]) is small as compared to the variation

of the interband dielectric function Δεib
2 (Fig. 4b), while

it becomes dominant for strong electron heating, due to
the quadratic dependence of Δτ−1

e−e on Te (Eq. (17)).
The temperature dependence of the τ−1

e−S contribution
(Eqs. (3) and (4)) comes from the modification of the sur-
face factor g (Eq. (5)) which is dominated by variations of
electron occupation numbers Δf . Its influence on εD

2 can
be appreciable in the case of small nanoparticles, as shown
in Figure 5b for 10 nm Au nanospheres. It can become
more important for still smaller nano-objects, as shown
for Ag nanospheres, bringing the first evidence of quan-
tum confinement in their transient optical response [53].
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Fig. 5. Computed changes of the Drude contribution to the dielectric functions in Au following excitation in the same conditions
as in Figures 4a and 4b. (a) and (b) show the effect on ΔεD

2 of electron gas heating (by modifications of τ−1
e−e and τ−1

e−S for
a 10 nm diameter gold nanoparticle, respectively), (c) and (d) the influence of lattice temperature (by modifications of ne and
τ−1

e−ph, respectively).

5.2 Lattice contribution

After thermalization with the lattice (occurring within a
few ps) the electron temperature has decreased to the
new equilibrium value, Te = TL = Teq > T0, and the di-
rect contribution of hot electron dynamics to the optical
response becomes negligible. Nevertheless, the dielectric
functions have not yet relaxed to the value before exci-
tation, due to their sensitivity on the lattice temperature
rise and the concomitant metal dilation, both decaying
with cooling by energy transfer to the environment.

The increased equilibrium interatomic distance of the
heated lattice leads to a modification of the electronic
band structure, mainly due to a reduced overlap between
orbitals, thus affecting band hybridization [67]. The filling
of electronic energy bands and the position of the Fermi
energy are modified accordingly. The effect on Δεib

2 can
be estimated through the different εib

2,l contributions (e.g.
d → p around the L point, Fig. 2), by taking into ac-
count the displacement of individual interband transition
thresholds λib,l with dilation under the assumption of a
rigid band shift (∂εib

2,l/∂λib,l = −∂εib
2,l/∂λ):

Δεib
2 (λ, t) = −

(
∑

l

∂εib
2,l

∂λ

∂λib,l

∂TL

)

ΔTL (t) . (18)

The term ∂λib,l/∂TL is estimated starting from
temperature-dependent ellipsometric measurements on

bulk gold, which yield ∂(�ωib)/∂TL ≈ −1.7 × 10−4 and
−3.2 × 10−4 eV/K for the d-band to Fermi energy tran-
sition around the L and X point, respectively [111] (the
contribution of the transition from Fermi energy to s-band
around the L point is smaller and its dependence on TL is
neglected here). The ∂εib

2,l/∂λ derivatives are numerically
deduced from the fit of the experimental bulk dielectric
function (Fig. 2). In parallel, the Δεib

1 contribution is esti-
mated by derivation of the Johnson and Christy bulk ex-
perimental data after subtraction of the Drude part [102].
The estimated changes of Δεib

1,2 (Figs. 4c and 4d) show
some structures around the onset of interband transitions
and their contribution increases with lattice temperature
(the time dependence of electron and lattice temperatures
computed with the TTM is shown in the inset of Fig. 4c).

Finally, lattice heating affects the εD
1,2 Drude terms by

an increase with ΔTL of both the electron-phonon scat-
tering rate τ−1

e−ph and the plasma wavelength λp ∝ 1/
√

ne,
electron density ne decreasing with TL. The ΔεD

2 term
(Eq. (16)) is indeed dominated by the contribution of
Δτ−1

e−ph, whose variation with ΔTL can be expressed as
Δτ−1

e−ph = (∂τ−1
e−ph/∂TL)ΔTL, with ∂(�τ−1

e−ph)/∂TL ≈
0.125 meV/K for gold [112] (Fig. 5d). Conversely, the real
component εD

1 (Eq. (2), Fig. 5c) is primarily impacted by
reduction of the plasma wavelength due to dilation of the
nanoparticle and concomitant decrease of ne. ΔεD

1 can be
written as a function of the linear dilation coefficient of
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Table 2. Summary of main contributions to the change of the Au dielectric functions with electron and lattice heating. The
physical parameters responsible for ε1,2 variations are specified, with corresponding equations and figures.

Effect
Typical Physical Dielectric

Equation Figure Amplitude
timescale parameter function

Electronic contribution

Δf <ps εib
1 , εib

2 (6), (7) 4a, 4b dominant

Δτ−1
e−e εD

2 (16), (17) 5a dominant
ΔTe <ps Δτ−1

e−S εD
2 (5), (16) 5b size-dependent

Δτ−1
e−ph εD

2 negligible

Lattice contribution

ΔTL >ps Δλib εib
1 , εib

2 (18) 4c, 4d small

ΔTL >ps

Δne εD
1 (19) 5c dominant

Δτ−1
e−ph εD

2 (16) 5d dominant

Δτ−1
e−ph εD

1 negligible

Δne εD
2 negligible

Au (αL ≈ 1.42 × 10−5 K−1):

ΔεD
1 = −λ2

λ2
p

Δne

ne
=

λ2

λ2
p

3αLΔTL. (19)

It should be noticed that volume change thus induces
comparable modification of both the interband (electronic
band shifting) and intraband (change of electronic den-
sity) contributions, the former showing mostly around the
interband threshold λib, the latter dominating in the red
part of the spectrum (Figs. 4 and 5). These two mecha-
nisms are fundamental for the optical detection of acous-
tic vibrations of nano-objects (inducing periodic volume
changes) [5,7,15,39,43,113].

As expected, for a delay longer than ∼1 ps (electron-
lattice thermalization) the amplitudes of all contributions
to ε proportional to the electronic temperature ΔTe are
decaying (Figs. 4a, 4b, 5a and 5b) while the ones depend-
ing on ΔTL increase (Figs. 4c, 4d, 5c and 5d, see also
Tab. 2 for a summary of all the contributions to Δε).
Interestingly, computation of dε1,2/dTL derivatives by
summing interband (Eq. (18)) and Drude-like (Eq. (19))
contributions (Figs. 4c, 4d, 5c and 5d) shows good quan-
titative agreement with dε1,2/dTL derivatives (Fig. 6) de-
duced from recent measurements [114]. The estimated and
measured wavelength dispersions are similar, the resid-
ual discrepancy in the absolute values of these deriva-
tives being possibly due to uncertainties in the values of
the parameters in the previous estimated contributions
(e.g. Eq. (18)) [111] or to modifications not taken into
account in this model, such as other changes of the elec-
tron band structure (e.g., slight change of electron effective
mass [115]).

5.3 Electronic and lattice contributions in Ag

The analysis of dynamical variations of Δε after ultrafast
excitation can be extended to the case of Ag (Fig. 7). Δf
dynamics (Eq. (13)) are very similar to those of gold (inset

Fig. 6. Experimental (dotted lines) and theoretical (solid
lines) determinations of ε1 (black) and ε2 (red) temperature
dependence of Au. Experimental values are taken from refer-
ence [114], computed ones were obtained from the model de-
scribed in Section 5.2 in the text.

of Fig. 4a), the main difference being the faster electron
internal and external thermalization in silver than in gold,
as a consequence of the weaker contribution of the d-band
electrons to screening in silver [6,20]. Transient variations
Δεib

1,2 of interband constants (Figs. 7a and 7b), computed
with the Rosei model (Fig. 2) and parameters of Table 1,
exhibit a large amplitude around 320 nm, corresponding
to the onset of interband transitions around the L point of
the Brillouin zone. Changes of interband constants with
lattice heating (Eq. (18)) [116–118] are similar to the case
of gold (not shown). Note that, due to very similar spe-
cific heats, the solution of the TTM (inset in Fig. 4c) gives
a lattice temperature dependence almost identical for the
two metals. Transient variations of the Drude terms are
also similar. The ΔεD

1 dependence on lattice temperature
rise (Fig. 7c) is close to the one of Au (Eq. (19) with
αL ≈ 1.89× 10−5 K−1 for Ag, Fig. 5c). Finally, ΔεD

2 pro-
files (Fig. 7d) are dominated by the τ−1

e−ph variation with
lattice temperature (∂(�τ−1

e−ph)/∂TL ≈ 0.057 meV/K for
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Fig. 7. Computed changes of interband and Drude dielectric functions in Ag following excitation by a 50 fs ultrafast pump
pulse (ΔTexc = 100 K with λpump = 850 nm). Solid, dashed and dotted lines correspond to 100 fs, 500 fs and 3 ps delay after
excitation, respectively. (a) and (b) show modifications due to electron heating, by changes of Δf . (c) shows the influence of
lattice temperature on ΔεD

1 , by modifications of ne. (d) shows the effect on ΔεD
2 of lattice heating, by modifications of τ−1

e−ph

(solid and dotted lines corresponding to 100 fs and 3 ps), and the one of electron heating by modifications of τ−1
e−e (dashed and

dash-dotted lines corresponding to 100 fs and 3 ps). Inset shows ΔεD
2 change dependent on τ−1

e−S for 10 nm Ag nanospheres.

silver [112]), with a small contribution from the electron
temperature dependent Δτ−1

e−e (Eqs. (16) and (17) with
�τ−1

e−e ≈ 12 meV [56]). Changes of τ−1
e−S with temperature

computed from the g dependence on Δf give the same
profiles as for Au (inset of Fig. 7d).

6 Ultrafast nonlinear optical response
of metal nanoparticles

Transient modifications of the extinction cross-section
Δσext(λ, t) in the context of time-resolved experiments are
computed using equation (1) by multiplying the nanopar-
ticle a1,2 (λ) derivative coefficients, determined from their
linear absorption spectrum (Sect. 3, Fig. 3), and the Au
and Ag Δε1,2(λ, t) dielectric function changes (Sect. 5,
Figs. 4, 5 and 7), taking into account both interband and
intraband contributions (Fig. 8).

In the case of silver nanospheres (Fig. 8b), transient
spectral features are centered around two distinct posi-
tions, namely λSPR (around 400 nm) and λib (<320 nm).
The former highlights the enhancement of the time-
resolved response by plasmonic effects (large a1,2 deriva-
tives near SPR, Fig. 3b). The latter is similar to that of

bulk silver [6] and reflects modification of the electron dis-
tribution around the Fermi energy and subsequent heating
of the metal (Fig. 7). In the spectral region around λib,
a1,2 are small and undispersed and the Δσext spectral
shape reflects the dispersion of Δε1 and Δε2, determined
by electron internal thermalization and cooling. As λSPR

is spectrally separated from λib, Δεib
2 around the SPR

is nonzero only for very short times t (<50 fs) and re-
flects a strongly out-of-equilibrium electron energy distri-
bution during and immediately following excitation, with
perturbation and probing of the occupation of electronic
states energetically distant from Fermi level. For longer
delays (∼100 fs), this transient out-of-equilibrium contri-
bution vanishes and Δσext becomes proportional to a1. Its
time behavior thus essentially follows that of Δεib

1 , which
is approximately proportional to the electron excess en-
ergy density Δue [6,9]. As a result, far from interband
transitions, Δσext increases with energy injection in the
electrons and decays with the electron energy loss to the
lattice. During electron-lattice thermalization, the spec-
tral shape of Δσext is strongly modified. Interband Δεib

1,2
contributions, which mainly depend on the electron tem-
perature Te, become negligible, and the strongest contri-
butions come from the Drude term ΔεD

1 , proportional to
lattice dilation, and ΔεD

2 , which reflects increase of the
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Fig. 8. Computed extinction cross-section changes for the same nanosystems as in Figure 3, for three different delays after
excitation by a 50 fs ultrafast pump pulse (ΔTexc = 100 K with λpump = 850 nm), using equation (1) after determination of
their spectral derivatives (Fig. 3) and dielectric functions changes (Figs. 4, 5 and 7). The vertical lines correspond to λSPR (see
Fig. 3).

electron-phonon scattering rate (Figs. 7c and 7d). The
latter being dominant, Δσext spectral shape reflects that
of a2.

In the case of a gold sphere, spectral overlap between
plasmon resonance and interband transitions (λSPR ≈
λib, see Figs. 3 and 4) reflects for short delays in a specific
spectral shape of the Δσext response, characterized by a
profile with two zero crossings (Fig. 8a). For longer de-
lays, as before, interband terms Δεib

1,2 become negligible as
compared to intraband ones and Δσext recovers a spectral
dependence proportional to a2ΔεD

2 . As the SPR position
sensitively depends on aspect ratio, λSPR and λib are sep-
arated on elongated gold nano-objects (Figs. 3c and 3d),
in contrast to the gold nanosphere case. Calculations of
Δσext for nanospheroids or nanorods, for a probe wave-
length parallel to the major axis (Figs. 8c and 8d), illus-
trate this spectral separation between SPR and interband
transition in the transient optical response, with distinct
spectral features associated separately to a1,2 derivative
coefficients or dynamical modifications of dielectric con-
stants Δε1,2, as in the case of a silver nanosphere (Fig. 8b).

7 Experiments on single metal nanoparticles
and ensembles

Investigations on the transient optical response of sin-
gle nano-objects are based on a pump-probe technique
where two femtosecond laser beams are collinearly focused
on the nanoparticle by a microscope objective (Fig. 1a).
The first pulse (pump) excites the nanoparticle, whose
time-resolved optical absorption is monitored by measur-
ing the transmission change of the second delayed pulse

(probe) with a photodiode. The experimentally measured
relative differential transmission is connected to Δσext

by [16,27,61]:

ΔT

T
(λ, t) = −Δσext (λ, t)

S
(20)

where T (λ, t) is the probe beam transmission and S =
(πD2

FWHM )/(4 ln 2) the surface of the focused probe laser
spot (DFWHM being its full width at half maximum).

The first femtosecond investigation on a single metal
nanoparticle was performed on isolated Ag nanospheres
in the 20–40 nm size range [27], by combining the
pump-probe experiment with Spatial Modulation Spec-
troscopy (SMS). This far-field technique permits single
particle detection and quantitative determination of its
linear extinction cross-section σext(λ) [82,119–121] (inset
of Fig. 9b). Time-resolved pump-probe signals for differ-
ent pump powers show a fast rise followed by a slower
decay (Fig. 9a), corresponding to energy injection into
the electron gas by the pump pulse and subsequent elec-
tron energy loss by thermalization with the lattice, respec-
tively. Conversely to ensemble experiments, the nanoparti-
cle excitation temperature for each of these measurements,
ΔTexc, can be precisely determined for the single optically
characterized nano-object, as SMS provides the absolute
value of its absorption cross-section at the experimental
pump wavelength.

As described in Section 6, the ultrafast kinetics is
mainly ruled by the time dependence of Δεib

1 , propor-
tional to the electron excess energy Δue (t) [6,9] for probe
wavelengths far from the interband transition thresh-
olds, as the Δε2 contribution is then negligible (Eq. (1)).
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Fig. 9. (a) Time dependence of the transmission change ΔT/T measured for a single 30 nm Ag nanoparticle supported on a
glass substrate, following excitation by a 140 fs pump pulse with λpump = 850 nm. Dotted, dashed and solid lines correspond
to 180, 280 and 480 μW pump power, corresponding to ΔTexc = 190, 275 and 415 K, respectively. The inset shows the maximum
of the ΔT/T signal as a function of pump power. (b) Simulated signals computed with equation (1), a1 and a2 derivatives being
determined after fitting the measured extinction cross-section by Mie theory (shown in the inset). (c) Plots on logarithmic scale
underline the change of decay time with excitation energy. (d) Normalized experimental decay times show good agreement with
calculations based on TTM. Adapted from reference [27].

This reflects into a linear dependence of the amplitude
of the time-resolved signals on excitation, as experimen-
tally observed (inset in Fig. 9a). Computations based on
the model described in Section 6 (solution of Boltzmann
equation and modeling of optical changes), using the
derivative coefficients computed from the linear exper-
imental extinction cross-section and the dielectric func-
tion changes upon pump excitation, reproduce very well
these pump power behaviors (Fig. 9b). For low excita-
tions the decay dynamics is essentially monoexponential
(Fig. 9c), the electron-phonon time constant τe−L increas-
ing with excitation temperature ΔTexc. A linear increase
of τe−L with ΔTexc is experimentally observed on single
Ag nanospheres (Fig. 9d), in very good agreement with
solution of the TTM (solid line in Fig. 9d) and with the
numerical model.

In more recent pump-probe experiments on a single
gold nanorod, the spectral shape, temporal dependence
and absolute amplitude of its extinction cross-section
change are found in excellent agreement with the dynami-
cal model, thus allowing to quantitatively characterize the
intrinsic optical nonlinearity of gold [32]. After its detec-
tion and quantitative linear absorption characterization
by SMS, the ultrafast response of a single nanorod is mea-
sured in this experiment around λSPR ≈ 810 nm (far from
λib) with probe polarization parallel to the major axis
(Fig. 10). Simulations of the Δσib

ext dynamics, i.e. varia-
tions of Δσext induced by the interband term Δεib

1,2 (see

Sect. 6), reproduce very well the experiments, both for sig-
nal amplitude and time dependence (Figs. 10a and 10b)
on the first picoseconds after excitation, justifying neglect-
ing of the Drude term and of any lattice contribution to
the short timescale signal. As expected, transient signals
for short delays reflect the a1 shape profile computed from
the experimental linear σext (Figs. 10c and 10d). This is
because Δεib

1 is approximately undispersed far from λib

and Δεib
2 is small. For λ ≈ λSPR (black line in Figs. 10a

and 10b), a1 vanishes and Δσext reflects Δεib
2 dynamics.

Conversely, for longer delays (t ≈ 4 ps), Δσext is not cor-
rectly reproduced any more by the Δεib

1,2 terms alone, and
inclusion of the ΔεD

2 variation due to lattice heating be-
comes necessary (experiments and model prediction are
represented by squares and dashed line in Fig. 10d, respec-
tively). It should again be emphasized that preliminary
determination of the nanorod absolute extinction cross-
section σext by SMS is the key here for quantitative mod-
eling of the nanoparticle heating and of the corresponding
modification to optical absorption. The transient response
of the single nanorods can thus be precisely interpreted on
the whole timescale as the combination of the dynamical
response of the bulk metal (no corrections for size con-
finement were applied to determine gold nanorod Δε1,2)
amplified by plasmonic effects [32].

In parallel with single particle investigations, the ma-
jority of pump-probe optical experiments have been per-
formed on nanoparticle ensembles, either embedded in
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Fig. 10. (a) Ultrafast extinction cross-section changes Δσext measured for a single 43×12 nm Au nanorod after excitation with
λpump ≈ 400 nm and ΔTexc = 125 K at different probe wavelengths around its SPR: from top to bottom, λprobe −λSPR = +30,
+40, 0, –30 and –20 nm (λSPR = 810 nm). (b) Computed interband contributions (Eq. (1)). (c) a1 and a2 coefficients (solid
and dashed lines, respectively) computed from the linear extinction cross-section. Vertical line corresponds to λSPR. (d) Dots,
triangles and squares correspond to measured transient spectra for a delay of 0 fs, 200 fs and 4 ps, respectively. Full lines
represent computed interband contributions for the same delays. Dashed line represents Drude contribution for the longest
delay. The inset shows Δεib

1 (solid line) and Δεib
2 (dashed line) computed at t = 200 fs. Adapted from reference [32].

glass or dispersed in liquid (Fig. 1b). While they have the
disadvantage of being less quantitative and being affected
by inhomogeneous effects, investigations on ensembles are
technically less demanding and easier to setup. By ne-
glecting absorption by the matrix and restricting to small
size and shape distributions and polarization-independent
pump absorption (as for nanospheres or interband exci-
tation of nanoellipsoids or nanorods, for example), the
transmitted probe optical power can be expressed by
Pt (λ, t) = Pi exp [−α (λ, t) L], α (λ, t) = nnpσ̄ext (λ, t) be-
ing the absorption coefficient, with L the thickness of
the sample (glass or cuvette), nnp the volume density of
nanoparticles and σ̄ext the mean value of their extinction
cross-section. The experimental relative differential trans-
mission can be expressed in this case by:

ΔT

T
(λ, t) =

Pt (λ, t) − Pt (λ, 0)
Pt (λ, 0)

≈ −Δα (λ, t)L

≈ −nnpLΔσ̄ext (λ, t) . (21)

It should be underlined that, as comparison of equa-
tions (20) and (21) highlights, quantitative determination
of the absolute value of cross-section variations is more
difficult in ensemble experiments, because of (1) inho-
mogeneous size and shape dispersion (Δσ̄ext vs. Δσext);
(2) the density factor nnp which is in general not known
with a good precision and (3) spatial extension of the
pump and probe beams in the focal plane, generally lead-
ing to a non uniform heating and probing, respectively,
within the intersection volume (this effect being neglected
in Eq. (21), which applies to position-independent exci-

tation and probing). Nonetheless, experiments on ensem-
bles have brought deep insights into the dynamics of metal
nano-objects.

In this context, early investigations on silver
nanospheres [53] led to a physical interpretation of ultra-
fast SPR dynamics as a consequence of transient frequency
shift and broadening of the SPR after excitation. Selective
investigation of the SPR dynamics requires spectral sepa-
ration of SPR and interband transitions, Ag nanospheres
and Au nanorods both satisfying this condition, conversely
to Au nanospheres (Fig. 3). As for individual nanorods,
transient signals measured on ensembles of Ag nanoparti-
cles in glass matrix around λSPR (Figs. 11a and 11b) show
a dispersion-like transient profile, crossing the horizontal
axis around λSPR and relaxing to the initial equilibrium
value on a picosecond timescale. This specific derivative-
type profile, with an increase of the sample absorption for
wavelengths larger than the SPR, yields evidence for a
pump-induced red-shift of the SPR, while its asymmetry
indicates a concomitant broadening (Fig. 11b). These two
effects could be isolated (Fig. 11c), and their different time
dependences compared to the ones of Δεib

1,2 (Fig. 11d).
As for the case of isolated gold nanorods, energy in-

jection reflects into a fast increase of εib
1 , which directly

translates into a red-shift of the SPR and decays to its
initial value within a few ps by electron-lattice thermal-
ization [53]. The SPR broadening has been shown to be
determined by Δε2 containing two different contributions
with different timescales: a fast one (50 fs) related again
to the change of interband properties, Δεib

2 reflecting ul-
trafast modifications of state occupation number during

http://www.epj.org


Eur. Phys. J. B (2014) 87: 260 Page 15 of 19

Fig. 11. (a) Measured time dependence of the relative absorption change −ΔT/T for different probe wavelengths in glass-
embedded 26 nm diameter Ag nanoparticles. A 30 fs infrared pump pulse excitation was used, corresponding to an electron
temperature increase ΔTexc = 160 K. The inset shows the sample absorption spectrum. (b) Probe wavelength dependence of the
absorption change −ΔT/T around the SPR for probe delays of 400 fs (circles), 1 ps (triangles) and 2 ps (squares). Lines are fits
assuming a pump-induced SPR frequency shift and broadening. (c) and (d) Measured time dependence of the SPR frequency
shift (ΔΩSPR) and broadening (ΔΓSPR). Full and dotted lines in (d) are the computed time-dependent −Δεib

1 and 2Δεib
2 . The

dashed line is the estimated broadening, sum of the computed interband contribution (red dotted line) and an intraband one
(dash-dotted). Adapted from reference [53].

and immediately after excitation, and a slower one due to
changes of τ−1

n (Eqs. (3) and (16)), the SPR width be-
ing proportional to the latter for a resonance spectrally
separated from interband transitions [61]. The τ−1

n dy-
namics is the sum of two weakly size-dependent terms
(τ−1

e−ph and τ−1
e−e), which decay on a few ps timescale, and of

the electron-surface scattering contribution (τ−1
e−S) which

is strongly size-dependent (Eq. (4)) and has a significant
contribution on a shorter timescale (∼300 fs), when elec-
tron temperature is higher as hot electrons are not ther-
malized with the lattice yet. This surface induced effect
is specific to confined systems, and becomes dominant in
small nanoparticles, as evidenced by size-dependent in-
vestigations of the ultrafast dynamics of Ag nanoparticles
with diameters varying from 30 nm to 6 nm (Fig. 12) [122].
It is a manifestation of quantum confinement, its exper-
imental quantitative investigation being recently pursued
by linear experiments on single nano-objects [61,62,65].

In a slightly different context, the sensitivity of the
SPR to thermal heating and electron density variations
has been recently exploited to elucidate femtosecond
charge transfer dynamics in hybrid semiconductor-metal
nanosystems, composed by a Au sphere directly grown on
the tip of a CdS nanorod [123,124]. Ultrafast pumping
at 400 nm, resonant with CdS excitonic absorption (blue

Fig. 12. Measured SPR broadening ΔΓSPR at a time delay
of 300 fs (circles) and 2 ps (squares) normalized to the SPR
shift ΔΩSPR at 300 fs in glass-embedded Ag nanoparticles
as a function of their inverse diameter (1/D), for an initial
excitation corresponding to ΔTexc = 250 K. Adapted from
reference [122].

arrow in Fig. 13a), leads to photoexcitation of an elec-
tron into the semiconductor valence band, the electron
being subsequently transferred to the Au sphere. After
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Fig. 13. (a) Experimental absorption spectrum of Au-CdS
metal-semiconductor hybrid nano-objects in solution (solid
red line). The distinct contributions to absorption of CdS
(blue dashed line) and gold (green dotted line) demon-
strate spectral separation between the semiconductor exciton
(around 480 nm) and Au SPR (540 nm), solid black line be-
ing the sum of the two individual spectra. (b) Experimental
spectral dependence of the absorption changes − (ΔT/T )d for
a 5 ps time delay (squares) and the corresponding fit (solid
line) taking into account the semiconductor to metal electron
and energy transfer and the subsequent ne and τ−1

n variations.
The inset shows the derivatives t1 (solid line) and t2 (dashed
line) of the transmission with respect to ε1,2 used in the model.
Adapted from reference [123].

fast electron-phonon thermalization (∼1 ps), the ΔT/T
signal still presents a long-time component [123], signa-
ture of intraband modifications due to electron tempera-
ture and density changes. This is dominated for a delay
of 5 ps by a SPR transient red-shift, characterized by an
absorption decrease (increase) at λ < λSPR (λ > λSPR),
and an additional broadening (Fig. 13b). A fit of the tran-
sient signal (solid line) allows to determine the most sig-
nificant contributions to the absorption change, Δλp and
Δτ−1

n , which are responsible for red-shift and broaden-
ing, through modifications of intraband εD

1 and εD
2 Drude

terms, respectively (Eqs. (2) and (16)). As λp depends on
electron density ne = Ne/V , the fit of the transient red-
shift allowed to determine a negative value for the density
change Δne/ne = −(5 ± 1) × 10−5, which corresponds to
a reduction of the electron density in the Au sphere in-

duced by the addition of the supplementary photoexcited
electron. Albeit surprising, this conclusion is in agreement
with results on silver clusters in gas phase [125] and is
quantitatively explained by the enhancement of the elec-
tronic occupied volume (induced by enhanced Coulomb
repulsion, increasing the spill-out effect), which is stronger
than the effect of electron number increment. In addition,
a relative change Δτ−1

n /τ−1
n = (1.1 ± 0.5) × 10−3 is ob-

tained by the analysis of the time-resolved signals, this
value being in excellent quantitative agreement with the
τ−1
e−ph electron-lattice scattering increase [112] correspond-

ing to lattice heating after hot electron injection. These in-
vestigations are an example of ultrafast charge and energy
transfer characterization by using the metal nanoparticle
transient optical signal as probe for the electron dynamics.

8 Conclusion

We reviewed investigations on the nonlinear ultrafast opti-
cal response of metal nanosystems, performed both on en-
sembles of nanoparticles (embedded in a glass or immersed
in a solution) and on single nano-objects. In order to quan-
titatively understand their ultrafast optical time-resolved
response, a detailed theoretical model has been discussed.
It predicts both the physical evolution of the nanosys-
tems, after an initial out-of-equilibrium excitation, taking
into account both electron and lattice heating and their
thermalization, and the concomitant ultrafast changes of
the nano-object metal dielectric functions, which is at the
origin of the transient optical response. The different in-
terband and intraband contributions to the modification
of the dielectric functions have been discussed and the
specific effects of electron and lattice dynamics on each
contribution have been analyzed. We also detailed the cru-
cial role of the metal nanoparticle localized surface plas-
mon resonance to the enhancement of the ultrafast opti-
cal response. Interestingly, both in the case of single gold
nanorods and silver nanospheres, the transient optical re-
sponse is shown to be obtained by the combination of
the dynamical response of the bulk metal amplified by
plasmonic effects, typical of nanometric confined systems,
these experiments allowing to quantitatively determine in-
trinsic ultrafast nonlinearities of bulk materials.

An accurate modeling of the ultrafast response of
metal nanoparticles opens the way to precisely understand
subtle effects leading to small transient optical response
changes. This is illustrated in the case of semiconductor to
metal charge and energy transfer in hybrid nanosystems.
In this situation, the analysis of the time- and wavelength-
dependent transient optical spectra led to the determi-
nation of the number of electrons being transferred and
to their dynamics [123]. More generally, fine analysis of
the ultrafast optical response in metal nanosystems opens
up many possibilities for the dynamical investigation of
different physical processes, including electron and lat-
tice dynamical coupling, acoustic and thermal kinetics,
internal energy redistribution and energy transfer to the
environment.
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