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Abstract. This paper presents the results of multifractal testing of two sets of financial data: daily data
of the Dow Jones Industrial Average (DJIA) index and minutely data of the Euro Stoxx 50 index. Where
multifractal scaling is found, the spectrum of scaling exponents is calculated via Multifractal Detrended
Fluctuation Analysis. In both cases, further investigations reveal that the temporal correlations in the data
are a more significant source of the multifractal scaling than are the distributions of the returns. It is also
shown that the extreme events which make up the heavy tails of the distribution of the Euro Stoxx 50
log returns distort the scaling in the data set. The most extreme events are inimical to the scaling regime.
This result is in contrast to previous findings that extreme events contribute to multifractality.

1 Introduction

Multifractal analysis has proved to be a valuable method
of capturing the underlying scaling structure present in
many types of systems via generalised dimensions [1] and
f(α) spectra [2]. These systems include diffusion limited
aggregation [3–5], fluid flow through random porous me-
dia [6], atomic spectra of rare-earth elements [7], cluster-
cluster aggregation [8] and turbulent flow [9]. In phys-
iology, multifractal structures have been found in heart
rate variability [10] and brain dynamics [11], and multi-
fractal analysis has been helpful in distinguishing between
healthy and pathological patients [12]. Multifractal mea-
sures have also been found in man-made phenomena such
as the Internet [13], art [14] and the stock market [15–17].

The concept of multifractality was first introduced
in the context of turbulence. It was soon applied to fi-
nance because of its heavy tails and long-term depen-
dence. These two features are also argued to be present in
financial data [18,19].

Performing multifractal analysis helps to increase our
knowledge about the financial system and further charac-
terise it. Many studies have found multifractal scaling in
financial data [20–23]. An understanding of this multifrac-
tal structure can enable deeper understanding of the dy-
namics of financial markets. If it is found to be a universal
feature of financial data, it provides an additional bench-
mark by which to measure the fitness of financial models.
This in turn can help in the design of well performing
portfolios and in risk management [17].

a e-mail: elena.s.green@nuim.ie

The Multifractal Model of Asset Returns (MMAR)
was introduced by Mandelbrot et al. [24] as an expla-
nation of the volatility clusters in financial data and to
include “outliers”, large deviations which make up the
fat tails of the return distribution. The MMAR was pre-
sented as an alternative to Autoregressive Conditional
Heteroscedasticity (ARCH) models which were introduced
by Engle [25] to account for volatility clustering. The
MMAR incorporates fat tails, fractional Brownian motion
BH

1 and the concept of “trading time” being distinct from
physical time [24].

The main assumption of the MMAR is that the dis-
tinct trading time warps the financial time series into a
multifractal structure. It takes the multifractality of the
financial time series as a given. It also rejects the concept
of outliers, insisting that even the most extreme events
should be accounted for by a decent model. The results
presented in this paper add credence to the assumption of
multifractality as a stylised facts of financial data. How-
ever they also cast doubt on the inclusion of the most
extreme events which was advocated by Mandelbrot and
others [19].

Two distinct empirical data sets are examined in this
paper. They are distinct in location and time scale. One is
an American index with prices recorded daily (Dow Jones
Industrial Average (DJIA)) and the other is a European
index with prices recorded each minute (Euro Stoxx 50).
The test for multifractality is carried out on the log returns

1 Where Brownian motion has Hurst exponent H = 1/2, BH

has Hurst exponent H , 0 < H < 1. H < 1/2 for an antipersis-
tent process, H > 1/2 for a persistent process. Brownian motion
with H = 1/2 has no memory.
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which were constructed from the price time series by:

Z(t) = log(S(t + Δt)) − log(S(t))

where S(t) is the price at time t. Δt is one day for DJIA
and one minute for Euro Stoxx 50.

The method used to find the scaling in the data is Mul-
tifractal Detrended Fluctuation Analysis (MF-DFA) [26].
The data and method are further described below.

The rest of this paper is laid out in the following way:
Section 2 outlines the method used to uncover the multi-
fractal structure of the data. Section 3 describes the em-
pirical data and how the parameters of MF-DFA were set.
Section 4 presents the results of the analysis. In Section 5
some further analysis is conducted to find the source of the
multifractal structures found in the data. Finally Section 6
contains a summary and conclusions.

2 Multifractal detrended fluctuation analysis

There are a number of numerical methods by which to
find the multifractal spectrum of time series. Two of
the most well-known are the Wavelet Transform Modulus
Maxima (WTMM) method [27,28] and Multifractal De-
trended Fluctuation Analysis (MF-DFA) [26]. It has been
shown that for data where the true fractal structure is
unknown, MF-DFA is the recommended method of these
two, showing less bias and being less likely to give a false
positive result [29–31]. This is the method used in this
paper.

MF-DFA is well suited to time series analysis because
it is designed for data of a finite length N , without re-
quiring an N → ∞ approximation for validity [26]. Also
this method treats the data simply as a one-dimensional
line and assigns new values to each portion of the time se-
ries. This deals with the data having direction-dependent
scaling properties and the nonequivalence of the time and
value axes [26]. The assigned values are then assessed for
multifractality.

The method involves the following steps, beginning
with a disaggregated time series X such as a set of
financial log returns.

1. Transform X into its mean-reduced cumulative sums
Y , Yj =

∑j
i=1

(
Xi − X̄

)
. This new data set is aggre-

gated, resembling a random walk rather than a noise
series, and has mean 0.

2. Starting from the beginning, divide Y into non-
overlapping segments of length s. Since s may not
divide evenly into N , make another set of segments
starting at the end of the data and coming back so
that no piece of the data is left out. This results in
2 [N/s] = 2Ns boxes covering the entire data set. Find
the least-squares polynomial fit yv of order m to the
data in each segment v = 1, . . . , 2Ns.

3. Find the root-mean-square error or fluctuation be-
tween the fit and the data in each segment. This is

the value F 2(v, s) of segment v of size s;

F 2(v, s) =
1
s

s∑

i=1

(Y [(v − 1) s + i] − yv[i])2

for v = 1, . . . , Ns and

F 2(v, s) =
1
s

s∑

i=1

(Y [N − (v − Ns)s + i] . . .

. . . −yv[i])
2

for v = Ns + 1, . . . , 2Ns.
4. Introduce a parameter q. Find the qth order variance

Fq for a range of both positive and negative q for each
segment size s.

Fq(s) =

[
1

2Ns

2Ns∑

v=1

(
F 2(v, s)

)q/2

]1/q

.

For q = 0, use the quenched average F0(s) =
exp[ 1

4Ns

∑2Ns

v=1 ln(F 2(v, s))].
5. Repeat steps 2, 3 and 4 for different segment lengths s,

finding a new set of values Fq(s) in each case.
6. For each value of q, plot Fq(s) versus s on a doubly

logarithmic scaled graph and find the least-squares lin-
ear fit to each curve. If an appropriate linear region
(more than one order of magnitude of s) is found for
all values of q, it can be concluded that there is scaling
in the data and the slopes h(q) can be calculated. If
h(q) varies with q, one can conclude that the scaling
is multifractal.

7. Find the multifractal exponent τ(q),

τ(q) = qh(q) − 1 − qH ′

where H ′ = h(1) − 1 is called the nonconservation
parameter2 and proceed to the f(α) spectrum via the
Legendre transforms:

α(q) =
dτ(q)
dq

f(α(q)) = α(q)q − τ(q).

A plot of f(α) versus α is the multifractal spectrum
for the time series data X .

Multifractality has been reported in cases where there
is only the spurious scaling which can arise in non- or
monofractal time series [31,34–36], and so caution is re-
quired. It is critically important to check the linearity
of the logarithmic plots as described in Step 6. Plotting
the slope of the line over a moving window should reveal
roughly constant slope over the length of the line before
linearity is accepted. Oscillation about a straight line is

2 This is an adjustment to the original definition of τ given
by Kantelhardt et al. [26], τ (q) = qh(q) − 1. It accounts for
the fact that F 2(v, s) is not strictly speaking a measure on the
time series Y . For further details, see references [32,33].
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Table 1. Summary statistics for the log return data examined in this paper for multifractal properties. N is the sample size of
the data, μ is the sample mean and σ the sample standard deviation. H is the estimated Hurst exponent of the sample.

Data Δt N Min Max μ σ Skewness Kurtosis H

DJIA 1 day 20922 −0.2563 0.1427 1.89 × 10−4 0.0117 −0.5931 27.2784 0.5146
Euro Stoxx 50 1 min 109545 −0.0935 0.0610 −4.5257 × 10−6 0.0011 −2.1397 1.0335 × 103 0.448
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Fig. 1. Graph of the daily log return data of the DJIA and of the minutely log return data of Euro Stoxx 50 whose multifractal
properties are examined in this paper. The log returns are given in units of standard deviation for ease of comparison in this
figure.

to be expected as these are statistical fractals. However,
if there is no significant linear region revealed by the lo-
cal slopes, we cannot conclude that there is multifractal
scaling in the data.

Finite-size effects are also an important considera-
tion [35]. Short monofractal time series can appear multi-
fractal due to linear correlations. Since the log return data
considered here have negligible linear correlations (Hurst
exponent H ≈ 1/2, see Tab. 1), this is not a concern for
our analysis.

Multiscaling Multifractal Analysis [37], an extension
to the MF-DFA method, has recently been recommended
to pick up information from any cross-overs that might be
in the data. A crossover is a point where the slopes change
on the graph of log(Fq) vs. log(s). Since we see no such
crossover points in our data, there is no need for this extra
analysis.

3 Data and implementation

The first data examined is the daily log returns of the
DJIA from 1928 to 2012 which contains 20 922 points.
This is a weighted average of the prices of 30 companies
based in the United States. Its normalised form is shown in
Figure 1. The dramatic downturn of late 2007 and 2008 is
included in this data set and the major “Black Monday”
crash of October 19th 1987 is obvious at approximately
1.5 × 104 days.

The Dow Jones Euro Stoxx 50 was also examined
and the normalised log returns for the time period of
interest are also shown in Figure 1. This is an index of
50 Blue-chip sector leaders from 12 Eurozone countries
which was launched in 1998. The data is minutely and
runs for a year, from the start of May 2008 until the end
of April 2009. There are 109 545 points in this time series.
The high volatility that can be seen in the middle of the

time series corresponds to the time around the Lehman
Brother’s collapse in September 2008.

The MF-DFA method was applied to both log return
time series. Summary statistics for the log return data of
DJIA and Euro Stoxx 50 are presented in Table 1. The
exclusion of overnight returns in the minutely time series
made no difference to the results of the analysis and so
they have been retained. All time outside of trading hours
has been omitted.

For the implementation of MF-DFA, certain parame-
ters have to be chosen. Both data sets were detrended by
order m = 1 polynomials as this led to the best scaling
results. The length scale s takes small steps from a min-
imum of 10 to a maximum of N/4 = N4, where N is the
length of the time series. This means that at the largest
scale there are 8 boxes since there are 2Ns boxes for each s.
This range of scales is proposed by Kantelhardt et al. [26].

A wide range of 1001 equally spaced values of the pa-
rameter q was chosen, with q ∈ [−50, 50]. This is a very
wide range in comparison with other studies [12,20,26,38]
where it is standard to use q ∈ [−5, 5]. However, for
smaller ranges of q, less of the multifractal spectrum is
revealed. It is found that f(α) ≈ 0 for the examined data
as q → ±50, and this captures the full spectrum.

4 Results

The plots of Fq(s) versus s on a doubly logarithmic scale
for the DJIA data for selected values of q are shown in Fig-
ure 2a. Although 1001 values of q were used in the analysis,
it is not practical to show all of them on the graph. The
segment size s takes 59 values from 10 to 5230. By check-
ing the local slopes of these lines (Fig. 2b) it is possible to
identify a scaling region over more than two orders of mag-
nitude from s = 10 to s = 2000. This region of scaling was
then used to construct the multifractal spectrum which is
displayed in Figure 3.



Page 4 of 9

s

lo
g(

F q
)

0

-1

-2

-3

10 100 1000 2000

q = 50

q = 5

q = 0

q = -5

q = -50

(a)

slo
ca

l s
lo

pe
s 

of
 lo

g(
F q

) 1

0.8

0.6

0.4

0.2

0
10 100 1000 2000 10000

q = 50
q = 5
q = 0
q = -5
q = -50

(b)

Fig. 2. DJIA: (a) Graph of log(Fq) versus log(s) for selected
values of q as shown on the graph. (b) Graph of the local slopes
of the lines in (a) calculated over 15 points for the same values
of q. The slopes remain reasonably constant for s ∈ [10, 2000].
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Fig. 3. Graph of the multifractal spectrum, f(α) versus α, for
DJIA calculated for the length scales s ∈ [10, 2000] and with
q ∈ [−50, 50].

The results of the initial check for scaling for the Euro
Stoxx 50 data are shown in Figure 4. It is not obvious
whether or not there is scaling in this data. The slopes are
not of the quality of those for DJIA observed in Figure 2b.
The multifractality is less certain in this case. It could be
argued that the local slopes in Figure 4a are not constant
over a sufficient range of s and so indicate a lack of scaling
in the Euro Stoxx 50 data. In this case, this data could be
presented as a counterexample to the stylised fact of the
presence of multifractality in financial return data [39].

It could also be argued that scaling is present over
more than two orders of magnitude; for 65 � s ≤ 10 000.
It breaks down for small segment sizes (s � 65) when q is
negative. The abrupt change in Fq(s) can be explained by
the presence of a section of consecutive zeroes in the log
returns. Since F is a measure of the distance of the data
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Fig. 4. Euro Stoxx 50: (a) Graph of log(Fq) versus log(s) for
selected values of q as shown on the graph. (b) Graph of the
local slopes of the lines in (a) calculated over 15 points for the
same values of q.
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Fig. 5. Graph of the multifractal spectrum, f(α) versus α, for
Euro Stoxx 50 calculated for the length scales s ∈ [65, 10 000]
and with q ∈ [−50, 50].

in any segment from a linear fit, when a segment ν lies
within this interval of zeroes, F (ν) is close to zero. The
smallest F dominates in Fq when q < 0 which explains
the drop in log(Fq) as s decreases for q < 0.

The multifractal spectrum for the range 65 � s ≤
10 000 is shown in Figure 5. The left side of the spec-
trum is stretched out and f(α) < 0 for α � 0.63. The
left side represents the areas of high Fq and so this is ev-
idence of poor scaling, and possibly even a breakdown in
scaling, of the most volatile segments. As we shall show
in Section 5.2, it is the extreme return events which are
responsible for these phenomena.

The fact that Figure 4 seems to indicate a lack of scal-
ing and yet the spectrum in Figure 5 can still be produced
shows that real caution is required when conducting mul-
tifractal analysis. A wide smooth spectrum does not imply
that the data actually has multifractal scaling.
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Table 2. Summary of the main results of MF-DFA on the daily DJIA and minutely Euro Stoxx 50 data for a range of
values of q ∈ [−50, 50]. The truncated data has extreme events replaced with smaller ones. It is discussed in Section 5.2. Here
Δα = αmax − αmin.

Data f(−50) α(−50) f(0) α(0) f(50) α(50) Δα
DJIA 0.049882 1.2124 1 1.0126 0.058373 0.78155 0.43087

Euro Stoxx 50 −0.023382 1.2437 1 1.0184 −0.0981 0.6226 0.62162
Truncated Euro Stoxx 50, c = 15 −0.021838 1.265 1 1.0169 0.017184 0.78068 0.48431

The spectra in this paper seem shifted to the right
in comparison to those in the literature [20,23,38]. This
can be accounted for by the updated definition of τ(q) in
Step 7 in Section 2. A summary of the results of MF-DFA
for both data sets is contained in Table 2.

5 The origins of multifractality

It is generally accepted that there are two possible sources
of multifractal scaling in time series data [26]. It could be
predominantly due to (1) the long-term correlations of
small and large fluctuations or (2) the data being drawn
from a heavy-tailed probability distribution. Both of these
influences can individually be removed from the data to
reveal what impact they have on the multifractality of the
time series.

Other recent work has shown that multifractality can
be viewed as the result of the Tweedie Convergence Theo-
rem, similarly to how Gaussian noise can be seen as the re-
sult of the Central Limit Theorem [40,41]. However, since
financial time series are not sequences of independent iden-
tically distributed random variables, the convergence the-
orem does not apply. Here we will examine the traditional
sources: correlations and the shape of the distribution.

5.1 Source of scaling – correlations

A simple way to check if correlations in the data pro-
duce any scaling is to shuffle the data as suggested by
Kantelhardt et al. [26]. Shuffling removes time correlations
and any scaling that remains must be due to the proba-
bility distribution from which the data is drawn. The dis-
tribution of the values is not affected by reordering the
series.

Any individual shuffle may still contain some corre-
lations, so to be sure to completely rid the data of all
correlations, both the DJIA and the Euro Stoxx 50 data
were shuffled 100 times, each random permutation be-
ginning with a new random number generator seed in
MatLab. The function Fq was found for each of the shuf-
fled data sets. These were then averaged to find Fq(s) =
1

100

∑100
i=1 Fq,i(s), where the index i identifies the shuffled

data sequence. The doubly logarithmic plots of Fq(s) ver-
sus s for different q were then checked for linearity. The
results are shown in Figures 6 and 7. The same analy-
sis was conducted with the quenched average, log(Fq(s)),
with very similar results.

For both time series, there is no significant linear re-
gion in the plots of log(Fq(s)) versus log(s). Thus we do

(a)

(b)

Fig. 6. Shuffled DJIA data: (a) Graph of the log of the av-
eraged scaling function, log(Fq), versus the log of the scale,
log(s), for selected values of q as shown on the graph. (b) Graph
of the local slopes of the lines in (a) calculated over 15 points
for the same values of q.

not have the rationale to proceed to calculate h(q) and
must instead conclude that multifractal scaling is absent
in these shuffled data sets.

Other studies [16,20,22,42,43] have found multifractal
scaling in shuffled financial data. However, as no explicit
investigation of the logarithmic plots and their local slopes
was conducted, the conclusion that multifractal scaling is
present is not justified.

Different degrees of shuffling were also employed so
that correlations of different length scales can be re-
moved [31]. Rather than reordering every point in the
data, the data was divided into intervals of length l.
Then each set of l adjoining points were kept together
while the order of the intervals was shuffled. This helps to
reveal how robust the scaling is to the presence of tempo-
ral correlations.

The result of this analysis for the DJIA data is
shown in Figure 8. Intervals of lengths l = 10, 50,
100, 500, 1000, and 5000 were kept intact and only the
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Fig. 8. DJIA: Graph of the local slopes of log(F25) versus
log(s) for shuffles with various interval lengths l as indicated
on the graph. The slope for the original data is also shown,
corresponding to the lines in Figure 2b.

order of the intervals was rearranged randomly 100 times
as was done for the original shuffling. Then the plots of
log(Fq) versus log(s) were found. Figure 8 shows the slopes
of these plots for q = 25.

The scaling is worst for the shortest interval length,
l = 10 for which any temporal correlations longer than
10 days have been destroyed. The local slopes for the scal-
ing function is strongly increasing with the box size rather
than oscillating about a constant value. For longer inter-
vals, more memory is preserved and correspondingly the
scaling improves.

When l = 500, the scaling is preserved. At this length
and for longer intervals, the slopes are oscillating about a
constant and do not show sustained curvature in a single
direction. This value, l = 500, gives an indication of the
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Fig. 9. Graph of the normalised empirically found distribution
of the DJIA (red squares) and Euro Stoxx 50 (blue circles)
data along with the Standard Normal curve for comparison. It
is shown on a semi-logarithmic scale to make the fat tails clear.

length of temporal correlations that are significant to the
multifractal scaling in the data. It is possible to infer that
the data has memory to the order of 100’s of days. The
scaling does not survive a more substantial change in the
ordering of the data.

Linear correlations in the log-returns only live for a
time scale of a few minutes, but the correlation in the ab-
solute values or the squared returns last much longer [18].
The results presented in this section provide evidence that
long-term correlations, which are removed by the shuffling
procedure, are a major source of the multifractality in
both the DJIA daily data and the Euro Stoxx 50 minutely
data.

5.2 Source of scaling – distribution

The empirical distribution of financial log returns is gen-
erally found to be leptokurtic [18]. Figure 9 shows the dis-
tribution for both the daily DJIA data and the minutely
Euro Stoxx 50 data. They have been normalised and are
shown along with the Standard Normal curve for compari-
son on a semi-logarithmic scale. The Euro Stoxx 50 data is
not shown completely; a negative log return of −86σ and
some positive returns of around 60σ are cut off to make
the graph clearer. The most extreme event in the DJIA
data is Black Monday, 19th October 1987. It constituted
a drop of over 22σ for this index.

The effect of the distribution on the scaling in the
time series can be revealed in a number of ways [20]. One
method involves truncating the tails of the distribution.
If large positive and negative log returns are replaced by
less extreme ones, the data will retain its temporal cor-
relations while removing the fat tails of the distribution.
This truncated data can then be tested for multifractality
to see what influence the tails of the distribution have on
the f(α) spectrum.

In order to carry out this analysis, any log returns z in
the data which satisfy |z| > cσ were replaced by sgn(z)cσ
where σ is the standard deviation of the raw data and c
is the truncation point. c varies from 1 to 10 for DJIA
and 1 to 15 for Euro Stoxx 50. The usual analysis was
then conducted on this new data set to find the scaling
properties. The number of points which were truncated
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Table 3. The cumulative frequency table showing the number of log returns whose absolute value is larger than the given
truncation point c for both the DJIA and Euro Stoxx 50 time series.

c: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DJIA 3875 957 362 162 75 45 27 13 10 5 4 3 1 1 1

Euro Stoxx 50 14 166 2516 671 299 206 161 128 109 90 79 68 57 53 45 42

(a)

(b)

Fig. 10. (a) Graph of the local slopes calculated over 15 points
of log(F25) versus log(s) for DJIA log returns for a range
of truncation points cσ for the values of c indicated on the
graph. (b) Graph of the local slopes calculated over 15 points
of log(F25) versus log(s) for the Euro Stoxx 50 log returns for
a range of truncation points cσ for the values of c indicated on
the graph. The slope for the original data in both cases is the
thick red line.

for each level c are shown in Table 3. The local slopes of
the plots of log(Fq) versus log(s) for q = 25 for both the
DJIA and Euro Stoxx 50 are shown in Figure 10.

For the DJIA data shown in Figure 10a, the oscillations
of the slopes become more severe for more severe trunca-
tion. However the scaling is preserved. Extreme events are
evidently not imperative to the scaling in this time series.

For the Euro Stoxx 50 data in Figure 10b, the scaling
is actually improved after modest truncation. Apart from
the most severe cases of c = 1 and c = 2, the slopes are
reasonably constant. The severe leptokurtosis of the Euro
Stoxx 50 log returns is actually a hindrance to the scaling.
This was initially indicated by the stretched left-hand side
of its f(α) plot shown in Figure 5. This can be contrasted
with the much more symmetric f(α) plot for the Euro
Stoxx 50 data truncated at c = 15 in Figure 11.

This spectrum is narrower than that of the original
Euro Stoxx 50 data (Δα = 0.48 here compared to 0.62 for
the original, see Tab. 2). This result is in agreement with

f(α
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Fig. 11. Graph of the multifractal spectrum, f(α) versus α,
for the Euro Stoxx 50 data after it has been truncated so that
any log returns |z| > 15σ have been replaced by z = sgn(z)15σ.
It has been constructed for s ∈ [65, 10 000].

others which have found that the multifractal spectrum
narrows when extreme events are truncated [20,44]. This
is to be expected as the narrower range of α reflects the
reduced heterogeneity in the data. However, where oth-
ers [20,35,43–46] have used the spectrum width Δα as a
metric for the level of multifractality, we have conducted a
more detailed analysis. We inspect the plots of log(Fq) and
the produced f(α) spectrum, giving more insight into the
effect of the extreme events. The extreme events cause the
spectrum to become asymmetric and negative at one end.
The left side of the spectrum in Figure 5 is stretched due
to poor statistics in those extreme areas of the time series.
Therefore the spectrum width Δα is unreliable in this case
to base conclusions on about the strength of multifractal
scaling.

Some studies have found that extreme events can-
not simply be thought of as scaled-up versions of smaller
events [47–49]. Extreme events appear to be drawn from
a different distribution and do not scale well with more
modest returns. The results of the analysis of Euro Stoxx
50 lend some support to this idea. While the scaling in the
complete data set is uncertain, the scaling improves when
large positive and negative returns are removed. This indi-
cates that they may belong to a separate scaling regime or
they may not scale at all. However the number of extreme
events is too small to test them separately for scaling.

In general there is no consensus in the published lit-
erature as to whether it is the fat tails of the distribu-
tion or the temporal correlations which contribute most
to the multifractal scaling in financial data. It has been
found that distribution contributes more to the mul-
tifractal scaling than do the temporal correlations in
some daily data [20,22]. Others have shown evidence of
the opposite [50] or that both sources are significantly
present [43]. Work on higher-frequency data [23,45] has
found that the correlations are the most likely cause of
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multifractality. Mixed results have been found for foreign
exchange rates [46,51,52]. These varied results imply that
the main source of multifractality is dependent on the par-
ticulars of each specific data set and that there is no uni-
versal law.

The resolution of the time series has an impact on
the results of MF-DFA. At small resolutions (e.g. minute)
where returns are more highly leptokurtic, the extreme
events can distort the scaling, while such distortion is ab-
sent at larger resolutions (such as days). The 42 most ex-
treme points removed from the Euro Stoxx 50 time series
by the truncation method have a major impact on the
scaling results. The data appears to made up of a multi-
fractal subset and these outliers.

6 Conclusions

A systematic study has been carried out on the multi-
fractal properties of two financial time series: daily DJIA
log returns from 1928 to 2012 and minutely Euro Stoxx
50 log returns from 2008 to 2009. Multifractal scaling has
been found in the DJIA data. Careful attention was paid
to finding an appropriate linear region in the logarithmic
plots of the scaling function Fq versus the segment size s
before concluding that multifractal scaling is present and
proceeding to the plot of f(α) versus α. This examination
makes this study more comprehensive than many others
which have investigated financial data for multifractality.

The scaling is open to interpretation for the Euro
Stoxx 50 time series. The uncertainty illustrates the need
for caution and for further analysis techniques to be devel-
oped in this area. A set tolerance of linearity of the log(Fq)
versus log(s) plots is required within which multifractality
can be accepted.

In the case of the DJIA daily data, the multifrac-
tal spectrum is nearly exactly symmetric. The one for
the minutely Euro Stoxx 50 data, on the other hand, is
stretched on the left and f(α) < 0 for α � 0.63. The
shape of its asymmetric f(α) plot reveals that the ex-
tremely volatile areas of the data scale differently from
the rest of the data or do not scale at all.

The temporal correlations in both data sets have been
shown to be a significant source of the multifractal scaling.
The scaling does not survive in either time series when the
data is reordered, thereby removing correlations.

Adjustments were also made to the distribution of the
returns to reveal its effect on the scaling. The results indi-
cate that the extreme events do not conform to the scaling
law which is followed by the smaller returns. In the case
of Euro Stoxx 50, the scaling is improved when the most
extreme events are removed. This is consistent with the
asymmetrical shape of its multifractal spectrum.

Our results are more comprehensive than others as
we are not content with the single metric Δα to measure
the level of multifractal scaling present in the data. We
conduct a more comprehensive examination, including the
log(Fq) plots, their local slopes, and the f(α) spectrum.
This more detailed analysis leads us to different conclu-
sions than those presented in other studies. We conclude

that these extreme events are actually inimical to the
multifractal scaling in the Euro Stoxx 50 log returns.
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papers to our attention. We also thank Sepanda Pouryahya
for helpful conversations. Elena Green and Daniel Heffernan
acknowledge the support of Science Foundation Ireland under
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30. P. Oświȩcimka, J. Kwapień, S. Drożdż, R. Rak, Acta
Physica Polonica B 36, 2447 (2005)

31. A.Y. Schumann, J.W. Kantelhardt, Physica A 390, 2637
(2011)

32. Z. Yu, L. Yee, Y. Zu-Guo, Chin. Phys. B 20, 090507 (2011)
33. P. Jizba, J. Korbel, Methods and techniques for multi-

fractal spectrum estimation in financial time series, in
Proceedings ASMDA, 2013

34. T. Lux, Int. J. Mod. Phys. C 15, 481 (2004)
35. W.X. Zhou, Chaos Solitons Fractals 45, 147 (2012)
36. J.-P. Bouchaud, M. Potters, M. Meyer, Eur. Phys. J. B 13,

595 (2000)
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