2018 Impact factor 2.481
Hadrons and Nuclei
Eur. Phys. J. A 3, 209-211

Short note

Spectroscopy of neutron deficient $^{\bf 108}$Te

D. Sohler1 - J. Cederkäll2 - Zs. Dombrádi1 - J. Persson3 - B. Cederwall2 - A. Johnson2 - L.-O. Norlin2 - M. Weiszflog4 - A. Atac3 - J. Blomquist2 - R.A. Bark5 - A. Kerek2 - W. Klamra2 - J. Kownacki6 - M. Lipoglavsek7,8 - S. Mitarai9 - J. Nyberg4 - H.A. Roth10,11 - G. Sletten5

1 Institute of Nuclear Research, 4001 Debrecen, P.O.Box 51, Hungary,
2 Physics Department, Royal Institute of Technology, Stockholm, Sweden,
3 Department of Radiation Science, Uppsala University, Uppsala, Sweden,
4 The Svedberg Laboratory, Uppsala University, Uppsala, Sweden,
5 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark,
6 Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland,
7 Department of Cosmic and Subatomic Physics, Lund University, Lund, Sweden,
8 J. Stefan Institute, Ljubjana, Slovenia,
9 Department of Physics, Kyushu University, Fukuoka, Japan,
10 Department of Physics, Chalmers University of Technology,
11 Gothenburg University, Gothenburg, Sweden

Received: 7 September 1998 Communicated by B. Herskind

The neutron deficient nucleus 108Te was studied in the 54Fe(58Ni,2p2n) reaction. A detector system consisting of 4 Euroball cluster detectors, a charged-particle detector ball and a 16 element neutron multiplicity filter was used to detect the emitted particles and $\gamma$ rays. A new, significantly extended level scheme was constructed on the basis of $\gamma\gamma$-coincidence relations. Spin values for the states were determined from angular distribution ratios. The experimental results are discussed in terms of the shell model.

21.10.Hw Spin, parity, and isobaric spin - 23.20.Lv Gamma transitions and level energies - 27.60.+j 90 $\leq$ A $\leq$ 149

Copyright Springer-Verlag