2018 Impact factor 2.481
Hadrons and Nuclei


Eur. Phys. J. A 10, 395-446

The light-baryon spectrum in a relativistic quark model with instanton-induced quark forces

The non-strange-baryon spectrum and ground states
U. Löring, B.Ch. Metsch and H.R. Petry

Institut für Theoretische Kernphysik, Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany

loering@itkp.uni-bonn.de

(Received: 27 March 2001 Communicated by V.V. Anisovich )

Abstract
This is the second of a series of three papers treating light-baryon resonances up to 3 GeV within a relativistically covariant quark model based on the three-fermion Bethe-Salpeter equation with instantaneous two- and three-body forces. In this paper we apply the covariant Salpeter framework (which we developed in the first paper, U. Löring, K. Kretzschmar, B.Ch. Metsch, H.R. Petry, Eur. Phys. J. A 10, 309 (2001)) to specific quark model calculations. Quark confinement is realized by a linearly rising three-body string potential with appropriate spinorial structures in Dirac space. To describe the hyperfine structure of the baryon spectrum we adopt 't Hooft's residual interaction based on QCD-instanton effects and demonstrate that the alternative one-gluon exchange is disfavored on phenomenological grounds. Our fully relativistic framework allows to investigate the effects of the full Dirac structures of residual and confinement forces on the structure of the mass spectrum. In the present paper we present a detailed analysis of the complete non-strange-baryon spectrum and show that several prominent features of the nucleon spectrum such as, e.g., the Roper resonance and approximate "parity doublets" can be uniformly explained due to a specific interplay of relativistic effects, the confinement potential and 't Hooft's force. The results for the spectrum of strange baryons will be discussed in a subsequent paper, see U. Löring, B.Ch. Metsch, H.R. Petry, this issue, p. 447.

PACS
11.10.St - Bound and unstable states; Bethe-Salpeter equations.
12.39.Ki - Relativistic quark model.
12.40.Yx - Hadron mass models and calculations.
14.20.-c - Baryons (including antiparticles).

© Società Italiana di Fisica, Springer-Verlag 2001