2018 Impact factor 2.481
Hadrons and Nuclei
Eur. Phys. J. A 15, 443-448 (2002)
DOI: 10.1140/epja/i2002-10055-3

Perturbation theory for velocity-dependent potentials

M.I. Jaghoub

Hashemite University, P.O. Box 150459, Zarka 13115, Jordan

mij@hu.edu.jo

(Received: 24 May 2002 / Published online: 3 December 2002)

Abstract
In the presence of a velocity-dependent Kisslinger potential, the partial-wave, time-independent Schrödinger equation with real boundary conditions is written as an equation for the probability density. The changes in the bound-state energy eigenvalues due to the addition of small perturbations in the local as well as the Kisslinger potentials are determined up to second order in the perturbation. These changes are determined purely in terms of the unperturbed probability density, the perturbing local potential, as well as the Kisslinger perturbing potential and its gradient. The dependence on the gradient of the Kisslinger potential stresses the importance of a diffuse edge in nuclei. Two explicit examples are presented to examine the validity of the perturbation formulas. The first assumes each of the local and velocity-dependent parts of the potential to be a finite square well. In the second example, the velocity-dependent potential takes the form of a harmonic oscillator. In both cases the energy eigenvalues are determined exactly and then by using perturbation theory. The agreement between the exact energy eigenvalues and those obtained by perturbation theory is very satisfactory.

PACS
03.65.Ge - Solutions of wave equations: bound states.
31.15.Md - Perturbation theory.

© Società Italiana di Fisica, Springer-Verlag 2002