https://doi.org/10.1140/epja/i2013-13025-8
Special Article - Tools for Experiment and Theory
Technical design report for the
ANDA (AntiProton Annihilations at Darmstadt) Straw Tube Tracker
Strong interaction studies with antiprotons
1
Universität Basel, Basel, Switzerland
2
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
3
Universität Bochum I. Institut für Experimentalphysik, Bochum, Germany
4
Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
5
Università di Brescia, Brescia, Italy
6
Institutul National de C&D pentru Fizica si Inginerie Nucleara “Horia Hulubei”, Bukarest-Magurele, Romania
7
IIT, Illinois Institute of Technology, Chicago, USA
8
AGH, University of Science and Technology, Cracow, Poland
9
IFJ, Institute of Nuclear Physics PAN, Cracow, Poland
10
Instytut Fizyki, Uniwersytet Jagiellonski, Cracow, Poland
11
FAIR, Facility for Antiproton and Ion Research in Europe, Darmstadt, Germany
12
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
13
Veksler-Baldin Laboratory of High Energies (VBLHE), Joint Institute for Nuclear Research Dubna, Dubna, Russia
14
University of Edinburgh, Edinburgh, UK
15
Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
16
Northwestern University, Evanston, USA
17
Università di Ferrara and INFN Sezione di Ferrara, Ferrara, Italy
18
INFN, Laboratori Nazionali di Frascati, Frascati, Italy
19
INFN, Sezione di Genova, Gran Sasso, Italy
20
Justus Liebig-Universität Gießen II. Physikalisches Institut, Liebig, Germany
21
University of Glasgow, Glasgow, UK
22
Kernfysisch Versneller Instituut, University of Groningen, Groningen, The Netherlands
23
Fachhochschule Südwestfalen Iserlohn, Iserlohn, Germany
24
Forschungszentrum Jülich, Institut für Kernphysik, Jülich, Germany
25
University of Silesia, Katowice, Poland
26
Chinese Academy of Science, Institute of Modern Physics, Lanzhou, China
27
INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
28
Lunds Universitet, Department of Physics, Lund, Sweden
29
Johannes Gutenberg-Universität, Institut für Kernphysik, Mainz, Germany
30
Research Institute for Nuclear Problems, Belarus State University, Minsk, Belarus
31
Institute for Theoretical and Experimental Physics, Moscow, Russia
32
Moscow Power Engineering Institute, Moscow, Russia
33
Technische Universität München, München, Germany
34
Westfälische Wilhelms-Universität Münster, München, Germany
35
IIT Bombay, Department of Physics, Mumbai, India
36
Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, India
37
Suranaree University of Technology, Nakhon Ratchasima, Thailand
38
Budker Institute of Nuclear Physics of Russian Academy of Science, Novosibirsk, Russia
39
Institut de Physique Nucléaire, CNRS/IN2P3 and Universit Paris-sud, Orsay, France
40
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
41
Institute for High Energy Physics, Protvino, Russia
42
Kungliga Tekniska Högskolan, Stockholm, Sweden
43
Stockholms Universitet, Stockholm, Sweden
44
Petersburg Nuclear Physics Institute of Russian Academy of Science, Gatchina, St. Petersburg, Russia
45
Università di Torino and INFN, Sezione di Torino, Torino, Italy
46
INFN, Sezione di Torino, Torino, Italy
47
Politecnico di Torino and INFN Sezione di Torino, Torino, Italy
48
Università di Trieste and INFN Sezione di Trieste, Trieste, Italy
49
Universität Tübingen, Tübingen, Germany
50
The Svedberg Laboratory, Uppsala, Sweden
51
Uppsala Universitet, Institutionen för Strålningsvetenskap, Uppsala, Sweden
52
Universitat de Valencia Dpto. de Física Atómica, Molecular y Nuclear, Uppsala, Spain
53
University of Technology, Institute of Atomic Energy Otwock-Swierk, Warsaw, Poland
54
National Centre for Nuclear Research, Warsaw, Poland
55
Österreichische Akademie der Wissenschaften, Stefan Meyer Institut für Subatomare Physik, Wien, Austria
* e-mail: paola.gianotti@lnf.infn.it
Received:
18
May
2012
Revised:
15
January
2013
Accepted:
22
January
2013
Published online:
20
February
2013
This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the ANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole
ANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.
© SIF, Springer-Verlag Berlin Heidelberg, 2013