https://doi.org/10.1140/epja/i2017-12392-4
Special Article - Tools for Experiment and Theory
High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN
1
European Organization for Nuclear Research (CERN), Geneva, Switzerland
2
Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Sevilla, Spain
3
Istituto Nazionale di Fisica Nucleare, Sezione di Bari, V. Orabona 4, 70125, Bari, Italy
4
CEA Irfu, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
5
Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
6
Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay, France
7
National Technical University of Athens (NTUA), Athens, Greece
8
University of Salamanca, Salamanca, Spain
9
INFN Laboratori Nazionali del Sud, Catania, Italy
10
Dipartimento di Fisica, Università di Catania, Catania, Italy
11
University of Lodz, Lodz, Poland
12
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
13
Technische Universität Wien, Wien, Austria
14
Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy
15
Instituto Superior Técnico, Lisbon, Portugal
16
Charles University, Prague, Czech Republic
17
Goethe University Frankfurt, Frankfurt, Germany
18
University of Manchester, Manchester, UK
19
University of Santiago de Compostela, Santiago de Compostela, Spain
20
Universitat Politècnica de Catalunya, Barcelona, Spain
21
Agenzia nazionale per le nuove tecnologie (ENEA), Bologna, Italy
22
Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy
23
Instituto de Física Corpuscular, Universidad de Valencia, Valencia, Spain
24
Paul Scherrer Institut (PSI), Villingen, Switzerland
25
Joint Institute for Nuclear Research (JINR), Dubna, Russia
26
Horia Hulubei National Institute of Physics and Nuclear Engineering, Măgurele, Romania
27
Institute of Physics and Power Engineering (IPPE), Obninsk, Russia
28
Japan Atomic Energy Agency (JAEA), Tokai-mura, Japan
29
European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440, Geel, Belgium
30
University of York, York, UK
31
Karlsruhe Institute of Technology, Campus North, IKP, 76021, Karlsruhe, Germany
32
Tokyo Institute of Technology, Tokyo, Japan
33
School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
34
Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
35
Istituto Nazionale di Fisica Nucleare, Sezione di Legnaro, Legnaro, Italy
36
Dipartimento di Astronomia, Università di Trieste, Trieste, Italy
37
Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
38
Depto. Ingeniería Electrónica, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain
39
University of Ioannina, Ioannina, Greece
40
University of Vienna, Faculty of Physics, Vienna, Austria
41
University of Granada, Granada, Spain
42
Bhabha Atomic Research Centre (BARC), Mumbai, India
43
Centre for Astrophysics Research, University of Hertfordshire, Hatfield, UK
44
Department of Physics, University of Basel, Basel, Switzerland
45
Australian National University, Canberra, Australia
* e-mail: massimo.barbagallo@ba.infn.it
Received:
30
June
2017
Accepted:
16
September
2017
Published online:
27
October
2017
A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.
© SIF, Springer-Verlag GmbH Germany, 2017