https://doi.org/10.1140/epja/i2018-12476-7
Regular Article - Experimental Physics
A high-efficiency gas target setup for underground experiments, and redetermination of the branching ratio of the 189.5 keV 22Ne(p,)23Na resonance
1
Dipartimento di Fisica, Università degli Studi di Genova, Genova, Italy
2
INFN, Sezione di Genova, Genova, Italy
3
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
4
Technische Universität Dresden, Dresden, Germany
5
INFN, Sezione di Padova, Padova, Italy
6
Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy
7
Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Università degli Studi di Bari, Bari, Italy
8
INFN, Sezione di Bari, Bari, Italy
9
SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
10
Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II and INFN, Sezione di Napoli, Strada Comunale Cinthia, 80126, Napoli, Italy
11
Gran Sasso Science Institute, L’Aquila, Italy
12
INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy
13
Institute of Nuclear Research (MTA Atomki), Debrecen, Hungary
14
Dipartimento di Fisica, Università di Torino, and INFN Sezione di Torino, Torino, Italy
15
Università degli Studi di Milano and INFN, Sezione di Milano, Milano, Italy
16
INFN, Sezione di Roma “La Sapienza”, Roma, Italy
17
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 1121, Budapest, Hungary
18
Dipartimento di Fisica “E. Fermi”, Università di Pisa, and INFN, Sezione di Pisa, Pisa, Italy
19
INAF Osservatorio Astronomico di Teramo, Via Mentore Maggini, 64100, Teramo, Italy
* e-mail: caciolli@pd.infn.it
Received:
3
November
2017
Accepted:
10
February
2018
Published online:
15
March
2018
The experimental study of nuclear reactions of astrophysical interest is greatly facilitated by a low-background, high-luminosity setup. The Laboratory for Underground Nuclear Astrophysics (LUNA) 400kV accelerator offers ultra-low cosmic-ray induced background due to its location deep underground in the Gran Sasso National Laboratory (INFN-LNGS), Italy, and high intensity, 250-500μA, proton and ion beams. In order to fully exploit these features, a high-purity, recirculating gas target system for isotopically enriched gases is coupled to a high-efficiency, six-fold optically segmented bismuth germanate (BGO) -ray detector. The beam intensity is measured with a beam calorimeter with constant temperature gradient. Pressure and temperature measurements have been carried out at several positions along the beam path, and the resultant gas density profile has been determined. Calibrated -intensity standards and the well-known keV 14N(p,)15O resonance were used to determine the -ray detection efficiency and to validate the simulation of the target and detector setup. As an example, the recently measured resonance at keV in the 22Ne(p,)23Na reaction has been investigated with high statistics, and the -decay branching ratios of the resonance have been determined.
© SIF, Springer-Verlag GmbH Germany, part of Springer Nature, 2018