https://doi.org/10.1140/epja/s10050-020-00279-6
Review
The hot GDR revisited
1
INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123, Catania, Italy
2
IJCLab, CNRS/IN2P3, Université Paris-Saclay, 91405, Orsay, France
Received:
17
July
2020
Accepted:
24
September
2020
Published online:
4
November
2020
The properties of the Isovector Giant Dipole Resonance are reviewed as a function of the temperature of the state on which it is built. The experimental methods, based on scintillation detectors efficient for the detection of high energy gamma-rays, are described. Methods for determining the excitation energy and temperature from the measurement of light charged particle energy spectra taking pre-equilibrium emission into account are presented. The resonance properties, energy, width and strength, are followed as a function of increasing temperature. The data are analyzed in the framework of the statistical model, which is briefly presented, by using the codes CASCADE and DCASCADE. Various prescriptions for the characteristics of the resonance as well as theoretical models are incorporated into these statistical codes in view of a direct comparison with the data. The successes and deficiencies of the Thermal Shape Fluctuation model at low temperatures are discussed. A salient feature is the surprisingly abrupt disappearance of dipole strength above a limiting temperature which depends on the nuclear mass. Several models taking into account the competition between the time scales of collective degrees of freedom and nuclear lifetime only roughly reproduce the trend of the data. This disappearance of strength is tentatively linked to the nuclear liquid–gas phase transition.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.