https://doi.org/10.1140/epja/s10050-024-01329-z
Regular Article - Theoretical Physics
Gapless neutron superfluidity in the crust of the accreting neutron stars KS 1731−260 and MXB 1659−29
Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, Boulevard du Triomphe, 1050, Brussels, Belgium
Received:
31
October
2023
Accepted:
27
April
2024
Published online:
29
May
2024
The interpretation of the thermal evolution of the transiently accreting neutron stars MXB 1659−29 and KS 1731−260 after an outburst is challenging, both within the traditional deep-crustal heating paradigm and the thermodynamically consistent approach of Gusakov and Chugunov that accounts for neutron diffusion throughout the crust. All these studies assume that the neutron superfluid in the crust is at rest. However, we have recently shown that a finite superflow could exist and could lead to a new gapless superfluid phase if quantized vortices are pinned. We have revisited the cooling of MXB 1659−29 and KS 1731−260 and we have found that gapless superfluidity could naturally explain their late time cooling. We pursue here our investigation by performing new simulations of the thermal relaxation of the crust of MXB 1659−29 and KS 1731−260 within a Markov Chain Monte Carlo method accounting for neutron diffusion and allowing for gapless superfluidity. We have varied the global structure of the neutron star, the composition of the heat-blanketing envelope, and the mass accretion rate. In all cases, observations are best fitted by models with gapless superfluidity. Finally, we make predictions that could be tested by future observations.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.