https://doi.org/10.1140/epja/s10050-025-01568-8
Regular Article - Theoretical Physics
Perturbative quantum Monte Carlo calculation with high-fidelity nuclear forces
1
Graduate School of China Academy of Engineering Physics, 100193, Beijing, China
2
School of Physics, Peking University, 100871, Beijing, China
Received:
31
January
2025
Accepted:
7
April
2025
Published online:
26
April
2025
Quantum Monte Carlo (QMC) is a family of powerful tools for addressing quantum many-body problems. However, its applications are often plagued by the fermionic sign problem. A promising strategy is to simulate an interaction without sign problem as the zeroth order and treat the other pieces as perturbations. According to this scheme, we construct precision nuclear chiral forces on the lattice and make perturbative calculations around a sign-problem-free interaction respecting the Wigner-SU4 symmetry. We employ the recently developed perturbative QMC (ptQMC) method to calculate the perturbative energies up to the second order. This work presents the first ptQMC calculations for two-body next-to-next-to-next-to leading order (LO) chiral forces and elucidates how the hierarchical nature of the chiral interactions helps organize and simplify the ptQMC calculations. We benchmark the algorithm for the deuteron, where exact solutions serve as rigorous reference points. We also reproduce the famous Tjon line by correlating the perturbative
He binding energies with the non-perturbative
H binding energies. These comprehensive demonstrations underscore the efficacy of ptQMC in resolving high-fidelity nuclear interactions, establishing its potential as a robust tool for ab initio nuclear structure studies.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.