https://doi.org/10.1140/epja/s10050-021-00493-w
Regular Article - Theoretical Physics
Electromagnetic transition form factors and Dalitz decays of hyperons
1
Institutionen för fysik och astronomi, Uppsala universitet, Box 516, 75120, Uppsala, Sweden
2
National Centre for Nuclear Research, 02-093, Warsaw, Poland
Received:
15
April
2021
Accepted:
18
May
2021
Published online:
5
June
2021
Dalitz decays of a hyperon resonance to a ground-state hyperon and an electron-positron pair can give access to some information about the composite structure of hyperons. We present expressions for the multi-differential decay rates in terms of general transition form factors for spin-parity combinations of the hyperon resonance. Even if the spin of the initial hyperon resonance is not measured, the self-analyzing weak decay of the “final” ground-state hyperon contains information about the relative phase between combinations of transition form factors. This relative phase is non-vanishing because of the unstable nature of the hyperon resonance. If all form factor combinations in the differential decay formulae are replaced by their respective values at the photon point, one obtains a QED type approximation, which might be interpreted as characterizing hypothetical hyperons with point-like structure. We compare the QED type approximation to a more realistic form factor scenario for the lowest-lying singly-strange hyperon resonances. In this way we explore which accuracy in the measurements of the differential Dalitz decay rates is required in order to distinguish the composite-structure case from the pointlike case. Based on the QED type approximation we obtain as a by-product a rough prediction for the ratio between the Dalitz decay width and the corresponding photon decay width.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.