https://doi.org/10.1140/epja/s10050-021-00494-9
Regular Article - Theoretical Physics
A finite box as a tool to distinguish free quarks from confinement at high temperatures
Institute of Physics, University of Graz, 8010, Graz, Austria
Received:
22
October
2020
Accepted:
13
May
2021
Published online:
5
June
2021
Above the pseudocritical temperature of chiral symmetry restoration a chiral spin symmetry (a symmetry of the color charge and of electric confinement) emerges in QCD. This implies that QCD is in a confining mode and there are no free quarks. At the same time correlators of operators constrained by a conserved current behave as if quarks were free. This explains observed fluctuations of conserved charges and the absence of the rho-like structures seen via dileptons. An independent evidence that one is in a confining mode is very welcome. Here we suggest a new tool how to distinguish free quarks from a confining mode. If we put the system into a finite box, then if the quarks are free one necessarily obtains a remarkable diffractive pattern in the propagator of a conserved current. This pattern is clearly seen in a lattice calculation in a finite box and it vanishes in the infinite volume limit as well as in the continuum. In contrast, the full QCD calculations in a finite box show the absence of the diffractive pattern implying that the quarks are confined.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.