https://doi.org/10.1140/epja/s10050-021-00501-z
Regular Article - Theoretical Physics
Chiral magnetic properties of QCD phase-diagram
1
Institute for Theoretical Physics (ITP), Goethe University, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
2
Egyptian Center for Theoretical Physics (ECTP), Juhayna Square of 26th-July-Corridor, 12588, Giza, Egypt
3
Faculty of Engineering, Modern University for Technology and Information (MTI), 11571, Cairo, Egypt
Received:
5
March
2021
Accepted:
18
May
2021
Published online:
21
June
2021
The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.