https://doi.org/10.1140/epja/s10050-021-00528-2
Regular Article - Theoretical Physics
Fluctuations and phases in baryonic matter
Physics Department, Technical University of Munich, 85748, Garching, Germany
Received:
6
March
2021
Accepted:
15
June
2021
Published online:
20
July
2021
The phase structure of baryonic matter is investigated with focus on the role of fluctuations beyond the mean-field approximation. The prototype test case studied is the chiral nucleon-meson model, with added comments on the chiral quark-meson model. Applications to nuclear matter include the liquid-gas phase transition. Extensions to high baryon densities are performed for both nuclear and neutron matter. The role of vacuum fluctuations is systematically explored. It is pointed out that such fluctuations tend to stabilize the hadronic phase characterized by spontaneously broken chiral symmetry, shifting the chiral restoration transition to very high densities. This stabilization effect is shown to be further enhanced by additional dynamical fluctuations treated with functional renormalisation group methods.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.