2023 Impact factor 2.6
Hadrons and Nuclei

EPJ D Highlight - Novel plasma diagnostics method

Sketch of the momentum fluxes across the sheath edge.

Physicists have now devised an elegant plasma pressure diagnostic method by studying forces akin to the pressure change at the inner walls of energy saving light bulb when the light is switched on

Could the mundane action of switching on an energy saving light bulb still hold secrets? It does, at least for physicists. These bulbs are interesting because they contain low-temperature plasma—a gas containing charges from ions and electrons. Now, a German team has developed a method that could be used for measuring the increase in the plasma force on the inner side of such a light bulb when the light is switched on. These findings from Thomas Trottenberg and colleagues from Christian-Albrechts University in Kiel, Germany, have just been published in EPJ D. They have implications for plasma diagnostics concerning plasma-wall interactions used in surface modification and the production of thin film solar cells and microchips.

Read more...

EPJ D Highlight - The new frontier in plasma medicine

Likelihood that negatively charged oxygen ions will demonstrate scattering in water vapour based on experimental results.

Data on the transport of electrical charges in water vapour provide the key ingredients to new plasma models applicable to medicine

Applications of plasmas in medicine are a new frontier in therapeutic treatment. For example, they can help in stimulating tissue regeneration in the contexts of wound healing and dermatology. Before these and further applications can be developed, it is essential to understand the processes at work in plasmas - a unique kind of gas-like state of matter containing charged particles. Now a study published in EPJ D by a team led by Zoran Petrović from the University of Belgrade, Serbia, provides previously unavailable data on oxygen ion transport and the likelihood of such ions interacting with water molecules. These could contribute to new models of plasmas in liquids which account for how discharges are created in water vapour.

Read more...

EPJ D Highlight - Novel high-power microwave generator

Axial profile of the axisymmetric semi-circular structure to be used as a slow wave structure in backward wave oscillators.

A new study explores the viability of a novel structure to be used as a component of a high-power microwave source, designed to transfer energy to targets via ultra-high-frequency radio waves

High-power microwaves are frequently used in civil applications, such as radar and communication systems, heating and current drive of plasmas in fusion devices, and acceleration in high-energy linear colliders. They can also be used for military purpose in directed-energy weapons or missile guidance systems. In a new study published in EPJ D, scientists from Bangladesh demonstrate that their proposed novel method, which is capable of producing such microwaves, offers a viable alternative to traditional approaches. The solution was developed by Md. Ghulam Saber and colleagues from the Islamic University of Technology in Gazipur, Bangladesh.

Read more...

EPJ D – Graphical abstracts now required in EPJ D

We are pleased to inform the readers and authors of EPJ D that from now on articles published in the journal will feature a graphical abstract. While it is not meant to provide specific results, this element will serve the purpose of conveying visually the gist of the article, along with the title. Authors may use an item already present in the manuscript or a purpose-made graphic. The use of color is strongly encouraged. Images previously published under the copyright of other publishers cannot be considered.

EPJ D Highlight - The power of light-matter coupling

Illustration of molecules coupled to the fundamental optical mode of a 145nm thick Fabry-Perot cavity. It features a typical example of the absorption spectrum of uncoupled (red line) and coupled (dark line) molecules. © A. Canaguier-Durand et al.

A theoretical study shows that strong ties between light and organic matter at the nanoscale open the door to modifying these coupled systems’ optical, electronic or chemical properties.

Light and matter can be so strongly linked that their characteristics become indistinguishable. These light-matter couplings are referred to as polaritons. Their energy oscillates continuously between both systems, giving rise to attractive new physical phenomena. Now, scientists in France have explained why such polaritons can remain for an unusual long time at the lowest energy levels, in such a way that alters the microscopic and macroscopic characteristics of their constituting matter. These findings thus pave the way for optical, electronic and chemical applications. The work has been published in EPJ D by Antoine Canaguier-Durand from the University of Strasbourg, France, and colleagues.

Read more...

EPJ D North American Regional Editor

Kurt Becker
We are pleased to announce a new editorial position for EPJD, that of North American Regional Editor. The aim of this role is to build the reputation of the journal throughout the USA and Canada, establishing further links with the ATMOP community and consolidating EPJD’s position within the field. We are delighted to announce that Professor Kurt Becker has been appointed to this position, continuing his close association with the journal and building on the exceptional work done over his five-year term as Editor-in-Chief.

New Editors-in-Chief for EPJ D

December 31st, 2014 marked the end of the terms of appointment of two of the Editors-in-Chief for EPJD, Professor Kurt Becker (New York University, USA) and Professor Nigel Mason (Open University, UK). Profs Becker and Mason have served as Editors-in-Chief since 2009, representing the fields of plasma physics and atomic and molecular physics respectively. Under their leadership the journal has seen substantial growth and development across a broad range of topical areas, with special issues published in diverse fields including microplasmas, electron-positron collision physics, cluster physics and radiation biodamage. The publishers would like to express their sincere appreciation to Kurt and Nigel for their service to the journal and the wider community as Editors-in-Chief over the past five years.

We are delighted to announce the appointment of their successors, starting from 1st January 2015.

Read more...

EPJ D Colloquium - Quantum optics with quantum dots

Maps of the wavefunctions of the first five electronic levels in the conduction band of a single InAsP/InP quantum dot, measured by by scanning tunneling microscopy and spectroscopy

The aim of quantum information research is to harness the distinctive features of quantum physics, especially superposition and entanglement, to enhance the functionality and power of information and communication technologies. It has been a thriving interdisciplinary field of research for the last thirty years, extending from the fundamental investigation of quantum phenomena to the experimental implementation of disruptive quantum-enabled technologies.

Read more...

EPJ D Highlight - Atoms crystallised by light for precision measurement

Trajectories and intensities of two beam splitters. © D. Holzmann et al.

A new study focuses on the collective dynamics of illuminated atoms coupled to photons travelling in a nanofiber

Theoretical physicists have uncovered the existence of self-organised dynamics of atoms, bound by light into a crystal, with long range atom-atom interactions. These findings were recently published in EPJ D by Daniela Holzmann from the University of Innsbruck, Austria, and colleagues. This approach could, among others, help to better understand the process of crystallisation in new materials, and help implement efficient photon storage and precision measurements. Applied to ultra-cold atoms, it could aid in the study of long-distance interactions in the quantum dynamics of one-dimensional non- conventional materials, referred to as exotic matter.

Read more...

EPJ D Colloquium - Multiscale approach to the physics of radiation damage with ions

Features, processes, and disciplines, associated with radiation therapy shown in a space–time diagram, which shows approximate temporal and spatial scales of the phenomena. The history from ionization/exciation to biological effects on the cellular level are shown in the main figure and features of ion propagation are shown in the inset.

In this EPJ D Colloquium, the authors review the multiscale approach to the assessment of biodamage that results from the irradiation of biological media with ions. This approach is explained in depth and compared to other approaches. The ion propagation processes that take place in the medium concurrent with ionisation and excitation of molecules, transport of secondary products, dynamics of the medium, and biological damage, take place on a number of different temporal, spatial and energy scales. The multiscale approach, a physical phenomenon-based analysis of the scenario that leads to radiation damage, has been designed to consider all relevant effects on a variety of scales and to enable quantitative assessment of biological damage as a result of irradiation with ions.

Read more...

Editors-in-Chief
David Blaschke, Thomas Duguet and Maria Jose Garcia Borge
We express our heartfelt thanks for the valuable suggestions, which helped us for improving our manuscript.

K. P. Santhosh School of Pure and Applied Physics, Kannur University, Payyanur, India

ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and
Springer-Verlag