2019 Impact factor 2.176
Hadrons and Nuclei

News

Michel Calame joins the EPJ Scientific Advisory Committee (SAC)

Michel Calame

The Scientific Advisory Committee of EPJ is delighted to welcome Professor Michel Calame as the new representative for the Swiss Physical Society.

Michel Calame is head of the Transport at Nanoscale Interfaces Laboratory at the Swiss Federal Laboratories for Materials Science and Technology (Empa) and Professor of Nanoscience at the University of Basel in Switzerland.

His expertise is in nano- and molecular scale electronics and in the quantum transport properties of heterogeneous nano-scale devices. He served as a board member of the Maths, Astronomy and Physics Platform at the Swiss Academy of Sciences from 2007 to 2012 and was the head of the Swiss Nanoscience Institute PhD School from 2013 until 2016.

EPJ E Highlight - Polymers can fine-tune attractions between suspended nanocubes

Simulating motions of bottom-heavy squirmers.

Interactions between hollow silica nanocubes suspended in a solution can be adjusted by varying the concentration of polymer molecules added to the mixture.

Colloids are complex mixtures in which microscopic particles of one substance are suspended evenly throughout another. They can be prepared in many different ways, but to achieve desirable properties in the final mixture, researchers must maintain a delicate control over the interactions which take place between the particles. In new research published in EPJ E, a team led by Remco Tuinier at the Eindhoven University of Technology in the Netherlands demonstrate this level of control for a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes – a case which has only previously been explored through theoretical calculations.

Read more...

EPJ B Highlight - Skyrmion dynamics and traverse mobility

Skyrmion trajectory with red circles representing obstacles

Skyrmions could revolutionise computing exhibiting great potential in the electronic storage of information, and the key to such a breakthrough could be understanding their behaviour under applied currents.

As the demands on information technology increase, the need to improve the storage of data also grows. Many solid-state systems suggested for such a task are founded on the manipulation of skyrmions, perfect for such a role due to their size and stability. In a study published in EPJ B, authors N.P. Vizarim and C.J.O. Reichhardt from the Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, New Mexico, USA and their colleagues aim to understand how skyrmions behave in a substrate under dc and ac drives.

Read more...

EPJ B Highlight - Simulating cooperation in local communities

Modelling an increase in cooperation

Simulations reveal how the social benefits of supplies to goods and service providers in China could be improved through a payoff transfer system, which rewards individuals who cooperate the most with their local communities.

Many goods and service providers in China rely on supplies from local governments, but these are often limited by financial budgets – especially in rural villages. Members of the public must cooperate with their governments and each other in order for this system to run smoothly, but unfortunately, this balance is threatened by a small proportion of individuals who take in welfare without contributing fairly to their communities. In new research published in EPJ B, Ran Yang and colleagues at Tianjin University, China, introduce a new simulation-based approach which could help to solve this issue, through a cost-effective system which rewards individuals who use welfare systems responsibly.

Read more...

EPJ D Topical review - Wigner scattering theory for systems held together by Coulombic forces

Originally developed and formulated for nuclear scattering, Wigner’s theory is extremely general, with application in many branches of physics. Atomic Physics often makes use of an apparently separate formalism (MQDT) which is in fact a specialisation of Wigner’s theory. In a new Topical Review article published in EPJD, Jean-Patrick Connerade (Imperial College London, UK and and European Academy EASAL, France) discusses the relevance of Wigner Scattering theory and in particular its K-matrix formulation for all systems held together by coulombic forces, including not only atoms and molecules but also clusters.

Read more...

EPJ B Colloquium - Origin of optical bandgap fluctuations in graphene oxide

Graphene Oxide (GO) is a carbon-based nanomaterial prepared through the chemical oxidation of natural graphite in the presence of strong oxidants. It was identified long before pristine graphene, first reported in the 17th century by Brodie et al. Among many potential applications, GO can be used to produce reduced GO (rGO) for transparent conducting electrodes (TCEs), which has been, for instance, employed in the preparation of organic-light emitting diodes and organic photovoltaic devices. Other works also report the successful use of GO for the preparation of membranes for desalination and water purification, as well as active layers in biosensors, among many other applications. To address the needs of theses versatile applications several modifications in the synthesis of GO have been developed.

Read more...

EPJ B Highlight - Exploring mass dependence in electron-hole clusters

Electron-hole pairs can form within crystals (By Axelfoley12, from https://en.wikipedia.org/wiki/ Exciton#/media/File:Exciton.png)

New calculations reveal that the behaviours of electron-hole clusters depend strongly on the masses of their particles.

In solid materials, when an electron changes position without another to fill its place, a positively charged ‘hole’ can appear which is attracted to the original electron. In more complex situations, the process can even result in stable clusters of multiple electrons and holes, whose behaviours all depend on each other. Strangely, the masses of each particle inside a cluster can be different to their masses when they are on their own. However, physicists aren’t yet entirely clear how these mass variations can affect the overall properties of clusters in real solids. Through a study published in EPJ B, Alexei Frolov at the University of Western Ontario, Canada, reveals that the behaviour of one type of three-particle cluster displays a distinct relationship with the ratio between the masses of its particles.

Read more...

EPJ ST Highlight – Introduction to Celestial Mechanics in the XXIst Century

Space exploration is moving into a new era, the turn of the century has seen past glories fade and the focus of science and research move from one-off achievements and firsts, to the establishment of frameworks that will encourage sustainability. At the same time, the more we learn about space, the more we realise that plans must be put in place to mitigate threats from beyond our own atmosphere. As such, the EPJ Special Topics issue on ‘Celestial Mechanics in the XXIst Century’ reflects this shift in attention by spotlighting research that aims to cement humankind’s place amongst the stars.

Here, we present highlights from this issue where we learn how spacecrafts can get a boost in ‘Aerogravity Assisted’ interactions, how we might reduce the risk of space debris collision, and how a tethered diversion might protect Earth from asteroid impact.

EPJ ST Highlight - Spacecrafts get a boost in ‘Aerogravity Assisted’ interactions

The Voyager 2 probe gained the energy boost to escape the solar system from an AGA (NASA/JPL)

New research examines the effect of rotation and other variables in the applications of ‘aerogravity assisted’ manoeuvres to obtain an energy boost for space craft.

In a recent paper published in EPJ Special Topics, Jhonathan O. Murcia Piñeros, a post-doctoral researcher at Space Electronics Division, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, and his co-authors, map the energy variations of the spacecraft orbits during ‘aerogravity assisted’ (AGA) manoeuvres. A technique in which energy gains are granted to a spacecraft by a close encounter with a planet or other celestial body via that body’s atmosphere and gravity.

Read more...

EPJ ST Highlight - Reducing the risk of space debris collision

Debris plot by NASA / Public Domain

An increase in space launches requires the development of a method to clear space debris which could collide with valuable equipment. One plausible method of achieving this through the use of a tug vehicle requires a successful connection procedure.

As humanity expands its horizons beyond the Earth and begins to consider space missions with extended duration, sustainability necessitates the launch of more space vehicles, increasing the risk of collision with existing space debris. One method of clearing this debris involves a tug vehicle dragging it to a safe region. In a new paper published in EPJ Special Topics, authors Antônio Delson Conceição de Jesus and Gabriel Luiz F. Santos, both from the State University of Feira de Santana, Bahia, Brazil, model the complex rendezvous manoeuvres a tug vehicle clearing space debris would have to undergo to mitigate the risk of a collision that could cause irreparable damage at the moment of coupling.

Read more...

Editors-in-Chief
David Blaschke, Thomas Duguet and Maria Jose Garcia Borge
It has been a pleasure to work with you since we submitted our draft last September, and I wanted to thank you for your help during all stages of the publication process. Please extend our gratitude to the whole EPJA team.

Manuel Zambrana, Institut fuer Kernphysik, University of Mainz, Germany

ISSN (Print Edition): 1434-6001
ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and
Springer-Verlag