2017 Impact factor 2.799
Hadrons and Nuclei

EPJ A Highlight - The P2-Experiment - A future high-precision measurement of the weak mixing angle at low momentum transfer

The experimental setup of the P2-experiment to measure the weak mixing angle at the new electron accelerator MESA in Mainz.

The P2-experiment at the new electron accelerator MESA in Mainz aims at a high-precision determination of the weak mixing angle at the permille level at low Q2. This accuracy is comparable to existing measurements at the Z-pole but allows for sensitive tests of the Standard Model up to a mass scale of 50 TeV. The weak mixing angle will be extracted from a measurement of the parity violating asymmetry in elastic electron-proton scattering. The asymmetry measured at P2 is smaller than any asymmetry measured so far in electron scattering, with an unprecedented accuracy. This review just published in EPJ A describes the underlying physics and the innovative experimental techniques, such as the Cherenkov detector, beam control, polarimetry, and the construction of a novel liquid hydrogen high-power target. The physics program of the MESA facility comprises indirect, high-precision search for physics beyond the Standard Model, measurement of the neutron distribution in nuclei, transverse single-spin asymmetries, and a possible future extension to the measurement of hadronic parity violation.

Dominik Becker et al. (2018), The P2 experiment, Eur. Phys. J. A (2018) 54: 208, DOI 10.1140/epja/i2018-12611-6

David Blaschke, Thomas Duguet and Maria Jose Garcia Borge
It is a great satisfaction to see the fruit of months of research and discussions published in your journal. Besides, I express my gratitude for the quick and timely carrying out of the production process, the correct implementation of my amendments, the professionalism and the attention I have received.

G. Stellin, Institut fur Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universitat Bonn, Germany

ISSN (Print Edition): 1434-6001
ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and