2024 Impact factor 2.8
Hadrons and Nuclei

EPJ A Highlight - Lattice Improvement in Lattice Effective Field Theory

alt
The dimer-boson inverse scattering length $1/a_{3}$ versus lattice spacing at LO, NLO, and N2LO. The vertical lines give the upper limits of the fit range

Lattice calculations using the framework of effective field theory have been applied to a wide range of few-body and many-body systems. One of the challenges of these calculations is to remove systematic errors arising from the nonzero lattice spacing. While the lattice improvement program pioneered by Symanzik provides a formalism for doing this and has already been utilized in lattice effective field theory calculations, the effectiveness of the improvement program has not been systematically benchmarked.

In this work lattice improvement is used to remove lattice errors for a one-dimensional system of bosons with zero-range interactions. To this aim the improved lattice action up to next-to-next-to-leading order is constructed and it is verified that the remaining errors scale as the fourth power of the lattice spacing for observables involving as many as five particles. These results provide a guide for increasing the accuracy of future calculations in lattice effective field theory with improved lattice actions.

Editors-in-Chief
David Blaschke, Silvia Leoni and Dario Vretenar
We would like to express our utmost gratitude to the patient, guidance, and support provided by everyone at your esteemed journal throughout the publication process. It has been an honor to work with such a dedicated and professional team, and we look forward to achieving further successes in our future collaboration.

Dr. ShiYu Zhang, Lanzhou University School of Nuclear Science and Technology, China

ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and
Springer-Verlag