2024 Impact factor 2.8
Hadrons and Nuclei

EPJ B Colloquium - Ergodicity and large deviations in physical systems with stochastic dynamics

In ergodic physical systems, time-averaged quantities converge (for large times) to their ensemble-averaged values. Large deviation theory describes rare events where these time averages differ significantly from the corresponding ensemble averages. It allows estimation of the probabilities of these events, and their mechanisms, and has been applied to a wide range of physical systems, including exclusion processes, glassy materials, models of heat transport, proteins, climate models, and non-equilibrium quantum systems.

In a new Colloquium article published in EPJB, Dr Robert Jack (University of Cambridge, UK) outlines the application of large deviation theory to these systems, where it has yielded fresh insights into entropy production, current fluctuations, metastability, transport processes, and glassy behaviour. The article covers some recent developments and identifies general principles, discussing a selection of dynamical phase transitions, and highlighting some connections between large-deviation theory and optimal control theory.

Robert L. Jack (2020),
Ergodicity and large deviations in physical systems with stochastic dynamics
,
European Physical Journal B 93:74, DOI: 10.1140/epjb//e2020-100605-3

Editors-in-Chief
David Blaschke, Silvia Leoni and Dario Vretenar
We express our heartfelt thanks for the valuable suggestions, which helped us for improving our manuscript.

K. P. Santhosh School of Pure and Applied Physics, Kannur University, Payyanur, India

ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and
Springer-Verlag