2024 Impact factor 2.8
Hadrons and Nuclei

EPJ B Colloquium - Why heavy doping makes ultrafast plasmonic semiconductors

This EPJB Colloquium reviews the pioneering studies of plasmon resonance in heavily doped semiconductor thin films. It also reports the chemical synthesis and structural properties of heavily doped semiconductor nanocrystals. Their linear plasmonic response (under excitation with weak continuous-wave optical fields) is illustrated both theoretically and experimentally. Finally, the authors review the most recent results on the transient (i.e. nonlinear) ultrafast plasmonic features exhibited by chalcogenide nanocrystals under excitation with ultra-fast optical pulses, including a “gold-like” theoretical model. This model turns out to provide sufficient insights into the first experiments on heavily-doped plasmonic nanoparticles.

Plasmonics in heavily-doped semiconductor nanocrystals. Francesco Scotognella et al., Eur. Phys. J. B (2013) 86: 154, DOI: 10.1140/epjb/e2013-40039-x

Editors-in-Chief
David Blaschke, Silvia Leoni and Dario Vretenar
It is a great satisfaction to see the fruit of months of research and discussions published in your journal. Besides, I express my gratitude for the quick and timely carrying out of the production process, the correct implementation of my amendments, the professionalism and the attention I have received.

G. Stellin, Institut fur Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universitat Bonn, Germany

ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and
Springer-Verlag