2024 Impact factor 2.8
Hadrons and Nuclei

EPJ D Colloquium - All-atom relativistic molecular dynamics simulations of channeling and radiation processes in oriented crystals

In a new Colloquium article published in EPJD, authors from the MBN Research Center (Frankfurt am Main, Germany) review achievements made recently in the field of numerical modeling of ultra-relativistic projectiles propagation in oriented crystals, radiation emission and related phenomena. This topic is highly relevant to the problem of designing novel gamma-ray light sources (LSs) based on the exposure of oriented crystals to the beams of charged particles. Crystal-based LSs can generate radiation in the photon energy range where the technologies based on the fields of permanent magnets become inefficient or incapable.

Construction of novel crystal-based LSs is an extremely challenging task, which constitutes a highly interdisciplinary and broad field with numerical modelling being part of it. The authors focus on the approaches that allow for advanced computational exploration beyond the continuous potential and on binary collisions frameworks. A detailed description of the multiscale all-atom relativistic molecular dynamics approach implemented in the MBN Explorer package is given. Several representative case studies related to ultra-relativistic projectiles channeling and calculation of the spectral intensities are presented. In most cases, the input data used in the simulations, such as crystal orientation and thickness, the bending radii, periods and amplitudes, as well as the energies of the projectiles, have been chosen to match the parameters used in the accomplished and the ongoing experiments. Wherever available the results of calculations are compared with the experimental data and/or the data obtained by other numerical means.

Editors-in-Chief
David Blaschke, Silvia Leoni and Dario Vretenar
We would like to express our utmost gratitude to the patient, guidance, and support provided by everyone at your esteemed journal throughout the publication process. It has been an honor to work with such a dedicated and professional team, and we look forward to achieving further successes in our future collaboration.

Dr. ShiYu Zhang, Lanzhou University School of Nuclear Science and Technology, China

ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and
Springer-Verlag