2022 Impact factor 2.7
Hadrons and Nuclei

EPJ D Colloquium - Simulating lattice gauge theories within quantum technologies

Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for inter-disciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers.

Read more...

EPJ D Highlight - Measuring electron emission from irradiated biomolecules

Variations in electron scattering angles

OrigiA new experiment has characterised the properties of the electrons emitted when a key constituent of DNA is bombarded with high-velocity ions.

When fast-moving ions cross paths with large biomolecules, the resulting collisions produce many low-energy electrons which can go on to ionise the molecules even further. To fully understand how biological structures are affected by this radiation, it is important for physicists to measure how electrons are scattered during collisions. So far, however, researchers’ understanding of the process has remained limited. In new research published in EPJ D, researchers in India and Argentina, led by Lokesh Tribedi at the Tata Institute of Fundamental Research, have successfully determined the characteristics of electron emission when high-velocity ions collide with adenine – one of the four key nucleobases of DNA.

Read more...

EPJ D Topical review - Wigner scattering theory for systems held together by Coulombic forces

Originally developed and formulated for nuclear scattering, Wigner’s theory is extremely general, with application in many branches of physics. Atomic Physics often makes use of an apparently separate formalism (MQDT) which is in fact a specialisation of Wigner’s theory. In a new Topical Review article published in EPJD, Jean-Patrick Connerade (Imperial College London, UK and and European Academy EASAL, France) discusses the relevance of Wigner Scattering theory and in particular its K-matrix formulation for all systems held together by coulombic forces, including not only atoms and molecules but also clusters.

Read more...

EPJ D Highlight - Stresses and flows in ultra-cold superfluids

The superfluid flow around obstacles causes exotic forces and stress in quantum liquid. Free-Photos from Pixabay at https://pixabay.com/photos/rocks-stream-water-nature-1246183/

Mathematical modelling of superfluids, which exhibit quantum mechanical properties at a macroscopic scale, shows that they become deformed when flowing around impurities.

Superfluids, which form only at temperatures close to absolute zero, have unique and in some ways bizarre mechanical properties, Yvan Buggy of the Institute of Photonics and Quantum Sciences at Heriot-Watt University in Edinburgh, Scotland, and his co-workers have developed a new quantum mechanical model of some of these properties, which illustrates how these fluids will deform as they flow around impurities. This work is published in the journal EPJ D.

Read more...

EPJ D Topical review - Recent total cross section measurements in electron scattering from molecules

Accurate new experimental data on electron interactions with matter are necessary for the understanding of a wide variety of natural and technological processes occurring in complex environments. Knowledge of the efficiency of electron interactions with biomolecules is crucial for the description and modeling of ionizing radiation damage to living cells and biomolecules radiolysis. Accurate experimental data concerning electron interactions are also important for the description of many phenomena occurring in plasma physics and gaseous electronics, including modeling of processes in cometary and planetary atmospheres.

Read more...

EPJ D Highlight - Questionable stability of dissipative topological models for classical and quantum systems

A schematic model showing generalised boundary conditions (represented by the parameter gamma in the gap).

Physicists Rebekka Koch and Jan Carl Budich make important contributions to understanding dissipative topological systems by studying the spectral instabilities that occur in the mathematical description and their effect on experimental setups in a new paper in EPJ D.

Energy conservation lies at the core of every physical theory. Effective mathematical models however can feature energy gain and/or loss and thus break the energy conservation law by only capturing the physics of a subsystem. As a result, the Hamiltonian, the function that describes the system's energy, loses an important mathematical property: it is no longer Hermitian. Such non-Hermitian Hamiltonians have successfully described experimental setups for both classical problems – in e.g. some optical systems and electrical circuits - and quantum ones, in modelling the motion of electrons in crystalline solids. In a new paper in EPJ D, physicists Rebekka Koch from the University of Amsterdam in the Netherlands and Jan Carl Budich from Technische Universität Dresden, in Germany, describe how these functions provide new insights into behaviour at the edges of topological materials.

Read more...

EPJ D Highlight - Looking for dark matter

A ‘clump’ of dark matter, shown approaching the Earth, causes tiny changes to fundamental constants and therefore to mass and acceleration when it passes through.

A new paper in EPJ D, ‘Constraining domain wall dark matter with a network of superconducting gravimeters and LIGO’, suggests two novel methods of searching for dark matter by measuring tiny perturbations in fundamental constants.

Dark matter, which cannot be physically observed with ordinary instruments, is thought to account for well over half the matter in the Universe, but its properties are still mysterious. One commonly held theory states that it exists as ‘clumps’ of extremely light particles. When the earth passes through such a clump, the fundamental properties of matter are altered in ways that can be detected if instruments are sensitive enough. Physicists Rees McNally and Tanya Zelevinsky from Columbia University, New York, USA, have now published a paper in EPJ D proposing two new methods of looking for such perturbations and, thus, dark matter. This paper is part of the EPJD Topical Issue on Quantum Technologies for Gravitational Physics which is still open to submissions.

Read more...

EPJ D Topical review - Electron collisions with molecules and molecular clusters

Over the last ten years, advances in the computational investigation of electron collision processes have seen an overhaul of many of the software packages employed by researchers, in parallel with the development of new tools. In particular, the increased interest in biological molecules as targets has stimulated the development of software which makes use of current computational abilities. These developments have enabled scientists to study small targets with increasing levels of detail, larger targets than ever before, and the effect of the environment by means of the investigation of small molecular clusters.

Read more...

EPJ D Topical review - Electron-scattering on molecular hydrogen: convergent close-coupling approach

Molecular hydrogen is the simplest neutral molecule, the most abundant molecule in the universe and an important constituent of plasmas with applications in astrophysics, fusion, atmospheric physics, and various industries. Elemental collision processes play an important role in modelling these plasmas, and collisions with electrons have attracted significant interest from both experiment and theory. A number of compilations of cross sections for electron collisions with molecular hydrogen have been produced. In all cases these cross section data sets have been produced from an analysis of experimental data, even though there were significant discrepancies between different experiments for many transitions. Theoretical calculations have been largely excluded from critical evaluations of the data due to large uncertainties. This changed with the application of the convergent close-coupling (CCC) method to electron collisions with molecules.

Read more...

EPJ D Highlight - Frozen-planet states in exotic helium atoms

https://commons.wikimedia.org/wiki/ File:Just_your_average_backyard_ low_energy_anti-proton_ accelerator_(2280414954).jpg, Tom Purves, Toronto, Canada / CC BY (https://creativecommons. org/licenses/by/2.0)

In an elegant study published in EPJ D, physicists from Serbia and Russia have mapped the energy levels and estimated the stability of a ‘frozen planet’ configuration of anti-protonic helium.

Exotic subatomic particles that are like ‘normal’ particles apart from one, opposite, property - such as the positron, which is like an electron but positively rather than negatively charged - are collectively known as antimatter. Direct studies of collisions between particles of matter and those of antimatter using giant facilities such as those at CERN can advance our understanding of the nature of matter. A new study by Tasko Grozdanov from the University of Belgrade in Serbia and Evgeni Solov’ev from the Institute of Nuclear Research near Moscow in Russia has mapped the energy levels of an exotic form of helium produced in this way. This work, which is published in EPJ D, has been described by one commentator as ”... a new jewel in the treasure of scientific achievements in atomic physics theory”.

Read more...

Editors-in-Chief
David Blaschke, Thomas Duguet and Maria Jose Garcia Borge
We would like to express our utmost gratitude to the patient, guidance, and support provided by everyone at your esteemed journal throughout the publication process. It has been an honor to work with such a dedicated and professional team, and we look forward to achieving further successes in our future collaboration.

Dr. ShiYu Zhang, Lanzhou University School of Nuclear Science and Technology, China

ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and
Springer-Verlag