News
EPJ B Highlight - Unlocking fuel cell conductivity
- Details
- Published on 17 March 2013

Work on a high-conductivity material demonstrates the role of oxygen ions in enhancing their capabilities
Yttria stabilized zirconia, also known as YSZ, is a material of great interest because of its relatively high oxygen-ion based conductivity. In particular, it finds applications in electrochemical devices, such as solid oxide fuel cells and oxygen sensors. In a study published in EPJ B, Kia Ngai, from the University of Pisa in Italy, and colleagues from the Complutense University in Madrid, Spain, devised a model of the oxygen-ion dynamics that contribute to the conductivity of YSZ.
EPJ D Highlight - New taxonomy of platinum nanoclusters
- Details
- Published on 17 March 2013

The unexpected diversity of metallic nanoclusters’ inner structure has now been catalogued into families
Physicists have gained new insights into the inner intricacies of the structural variations of metallic nanoclusters. This work by Luca Pavan, Cono Di Paola and Francesca Baletto from King's College London, UK, has just been published in EPJ D. It takes us one step closer to tailoring on-demand characteristics of metallic nanoparticles. Indeed, the geometric structure of these nanoclusters influences their chemical and physical properties, which differ from those of individual molecules and of bulk metals.
EPJ B Highlight - Spotting the invisible cracks in wind turbines
- Details
- Published on 23 February 2013

A new approach is available for real-time monitoring of the structural health of wind turbine components during exposure to turbulences.
Physicists have now developed a new method for analysing the elastic characteristics of mechanical structures subjected to disturbances, akin to the turbulences affecting wind turbines. These results have just been published in EPJ B by Philip Rinn and his colleagues at the ForWind Center for Wind Energy Research at the University of Oldenburg, Germany.
A significant percentage of the costs of wind energy is due to wind turbine failures, as components are weakened under turbulent air flow conditions and need to be replaced. The challenge for the team was to find a method for detecting fatigue in the wind turbines’ parts without having to remove each of the components and while the turbine is in operation.
EPJ E Highlight - Gap geometry grasped
- Details
- Published on 10 February 2013

A new algorithm could help understand the structure of liquids, and how they flow through porous media
Theoretical physicist Moumita Maiti and colleagues at the Jawaharlal Nehru Centre for Advanced Scientific Research in Bangalore, India, have now implemented an algorithm for analysing void space in sphere packing, where the spheres need not all be the same size. This method, just published in EPJ E, could be applied to analyse the geometry of liquids present between multi-sized spheres that are akin to a model for porous material. This provides a tool for studying the flow of such fluids through porous material. More importantly, it can also be used to study the packing geometry of proteins.
EPJ Plus Highlight - Simulations’ Achille’s heel
- Details
- Published on 10 February 2013

What can go wrong when computer simulations are applied outside their original context
In an article just published in EPJ Plus, Daan Frenkel from the University of Cambridge, UK, outlines the many pitfalls associated with simulation methods such as Monte Carlo algorithms or other commonly used molecular dynamics approaches.
The context of this paper is the exponential development of computing power in the past 60 years, estimated to have increased by a factor of 1015, in line with Moore’s law. Today, short simulations can reproduce a system the size of a bacterium.
EPJ B Highlight - Novel materials: smart and magnetic
- Details
- Published on 10 February 2013

Varying magnetic fields and temperature conditions help to elucidate smart materials’ transitory magnetic disorder
Novel, smart materials like shape memory alloys very often display so-called glass-like magnetism. Other smart materials with similar properties include those which, when exposed to a magnetic field, change their electrical resistance, known as manganites, or change their temperature, known as magnetocaloric materials. Kaustav Mukherjee and his colleagues from the Consortium for Scientific Research Indore in India studied a key stage in the formation of such a magnetic glass material, called Pr0.5 Ca0.5 Mn0.975 Al0.025 O3, in a paper just published in EPJ B.
EPJ D has a new Editor in Chief for quantum optics and quantum information
- Details
- Published on 04 February 2013

From January 2013 Vladimir Bužek succeeds Claude Fabre as Editor in Chief of EPJ D with responsibility for papers in quantum optics, quantum information and related topics.
Prof. Dr. Bužek graduated from the Moscow State University (both MSc and PhD) in theoretical physics. His research interests are focused on quantum optics, quantum information sciences, quantum measurement theory and foundations of quantum mechanics. He has been the head of the Research Center for Quantum Information at the Slovak Academy of Sciences and holds a professorial position at the Faculty of Informatics of the Masaryk University in Brno, Czech Republic.
EPJ H Highlight - More than one brain behind E=mc2
- Details
- Published on 04 February 2013

A new study reveals the contribution of a little known Austrian physicist, Friedrich Hasenöhrl, to uncovering a precursor to Einstein famous equation
An American physicist outlines the role played by Austrian physicist Friedrich Hasenöhrl in establishing the proportionality between the energy (E) of a quantity of matter with its mass (m) in a cavity filled with radiation. In a paper just published in EPJ H, Stephen Boughn from Haverford College in Pensylvannia argues how Hasenöhrl’s work, for which he now receives little credit, may have contributed to the famous equation E=mc2.
EPJ E Highlight - Liquid crystal’s chaotic inner dynamics
- Details
- Published on 04 February 2013

Scientists have unearthed a new dynamic process induced by strong electric fields in thin liquid crystal cells
Liquid crystal displays are ubiquitous. Now, Polish physicists have demonstrated that the application of a very strong alternating electric field to thin liquid crystal cells leads to a new distinct dynamic effect in the response of the cells. The theory of spatio-temporal chaos explains this effect. It was elucidated by Wojciech Jeżewski and colleagues from the Institute of Molecular Physics, Polish Academy of Sciences, in Poznań, Poland, and was just published in EPJ E. This effect has implications for the operation of liquid-crystal devices because their operation is based on the electro-optic switching phenomenon, subject to the newly discovered effect.
EPJ D Highlight - Fusion helped by collision science
- Details
- Published on 15 January 2013

Understanding the mechanisms of electron-molecule collisions could help predict the operations inside the fusion chamber of the ITER reactor
An international team of physicists has calculated the efficiency of a reaction involving an incoming electron kicking out an electron from the metal beryllium (Be) or its hydrogen compound molecules, in an article just published in EPJ D. The efficiency, which partly depends on the electron’s incoming speed, is encapsulated in a quantity referred to as electron-impact ionisation cross sections (EICS). Electron-molecule interactions matter because they occur in a broad range of applications from the simplest like fluorescent lamps to the most complex, for example, in ionised matter found in plasmas such as latest generation screens, the outer space of the universe, and in fusion reactors.