2022 Impact factor 2.7
Hadrons and Nuclei


EPJ Web of Conferences Highlight – Multi-line Diagnostics of the Interstellar Medium

Millimeter IRAM-30m picture of the Orion cloud (Credit: Jérôme Pety) overlaid with an optical view (Credit: ESO/Davide De Martin).

The IRAM conference “Multi-line Diagnostics of the Interstellar Medium” took place in Nice (France), from April 4-6, 2022.

Different aspects of the millimeter and submillimeter astronomy were tackled, from the chemical complexity of the interstellar medium in the local and early Universe, to the environment of stars in the earliest stages of formation but also the physical and chemical evolution of galaxies over cosmic time.


EPJ D Topical Issue on Quantum Aspects of Attoscience

This collection of articles contains contributions arising from the virtual conference Quantum Battles in Attoscience. The conference attracted more than 300 attendees from 34 different countries, and has spawned a successful series of bimonthly, online seminars – the so called 'AttoFridays'.

The aim of this novel workshop format was to support constructive debate about areas of controversy in attosecond science, and the centrepiece of the conference program were the Quantum Battles - an interactive, structured debate between early career researchers from competing groups in each field. These three battles – on tunnelling, interference and imaging in intense laser fields, and analytical vs ab initio theoretical approaches – have been written up as articles for this collection and each serves as an in-depth review of the topics, and the controversies therein. Alongside these are several articles on the quantum aspects of attosecond science including decoherence and entanglement in strong or tailored fields and ultrafast dynamics in novel materials. The collection is thus unusual in that it spans fundamental atomic and quantum physics all the way up to quantum technologies.


EPJ Web of Conferences Highlight – EOSAM 2022: EOS Annual Meeting

EOSAM 2022 attracted over 350 attendees in Porto, Portugal, 12-16 September.

EOS Annual Meeting EOSAM brought together photonics experts. The European Optical Society Annual Meeting, EOSAM, took place onsite in Porto from 12th to 16th September 2022.

EOSAM is a major international scientific conference covering all aspects of optics and photonics. It is attended by top researchers, key leaders, students, and industry experts.

As an integral conference in the field in Europe, EOSAM has always provided a valuable opportunity for presenting and discussing work, stimulating contact between colleagues, from young researchers to seasoned experts. EOSAM is where research meets industry and education.


EPJ Plus Highlight - Assessing the environmental impact of future ‘Higgs factories’

The abandoned tunnel of the Large Hadron Collider in 2019 during a shutdown. Eventually, the accelerator will have to be replaced and a new paper considers the environmental impact of its replacement. Credit: Robert Lea

New research looks at planned particle accelerators that will follow the retirement of the Large Hadron Collider— the world’s most powerful particle accelerator

In 2012 CERN’s Large Hadron Collider (LHC) revolutionised particle physics when it was announced that the Higgs boson had been created and detected by the world’s most powerful particle accelerator.

Yet, the work of the LHC isn’t done. It is currently in its third run and being prepared for a high luminosity upgrade that will lead to more collisions and thus the creation of more Higgs particles. But eventually the accelerator will need to be retired and replaced.

The comparisons of power consumptions or luminosity delivered for a given power for future Higgs-producing colliders have been widely considered, but a new paper in EPJ Plus by CERN researcher Patrick Janot and the University of Geneva’s Alain Blondel considers the environmental impact of future ‘Higgs factories’ that could replace the LHC.


EPJ C Topical Issue on New frontiers in holographic duality: From quantum complexity and black holes to hydrodynamics and neutron stars

Guest Editor: Ayan Mukhopadhyay

Over the last 25 years, holographic duality has revolutionised our understanding of gauge theories, quantum many-body systems and also quantum black holes. This topical issue is a collection of review articles on recent advances in fundamentals of holographic duality and its applications with special focus on a few areas where it is inter-disciplinary to a large measure. The aim is to provide a sufficient background on relevant phenomenology and other theoretical areas such as quantum information theory to researchers whose primary expertise is in quantum fields, strings and gravity, and also the necessary concepts and methods of holography to researchers in other fields, so that these recent developments could be grasped and hopefully further developed by a wider community.


Slobodan Žumer joins the EPJ Scientific Advisory Committee (SAC)

Slobodan Žumer

The Scientific Advisory Committee of EPJ is delighted to welcome Professor Slobodan Žumer, who has been an Editor for EPJ E for many years, as the new representative for the Society of Mathematicians, Physicists and Astronomers of Slovenia.

Slobodan Žumer is a professor of physics (University of Ljubljana) and a scientific adviser (Jozef Stefan Institute). He was the president of the International Liquid Crystal Society and is its Honored Member and recipient of the Pierre Gilles de Gennes ILCS Prize. He is an APS Fellow, an APS Outstanding Referee, and a European Academy of Sciences and Arts member. His interests are modeling, simulations, & theory of topological soft matter including liquid crystals, polymers, nematic elastomers, composites, colloids, active systems, and their use in optics & photonics.

EPJ Plus Focus Point on Advances in Photonics for Heritage Science: Developments, Applications and Case Studies

Guest Editors: Daniela Comelli, Austin Nevin & Gianluca Valentini

Photonics is the science of light and is considered one of the key enabling technologies for innovation in all industries. New photonic applications are emerging in various fields, such as environmental monitoring and medicine. The same technological innovation is being adopted in the field of heritage science, where photonics is the foundation for the application of a range of non-invasive, non-contact, and often portable devices for studying works of art and artistic materials.

In this Focus Point on “Advances in Photonics for Heritage Science: Developments, Applications and Case Studies”, the guest editors have selected seventeen papers that present a range of optical and photonics-based techniques, highlighting their advantages and limitations, as well as current and future applications to study our heritage.


EPJ Plus Highlight - How advanced optical tweezers revolutionized cell manipulation

A ‘tug of war’ set of optical tweezers — separated beams of light that can trap bacterium. Credit: Hu. S., et al, [2022]

A new review looks at devices called optical tweezers and how they are used to better uncover the natural secrets of human life at the single-cell level.

Optical tweezers (OTs), also known as optical traps, are highly focused laser beams that can be used to trap and manipulate microscopic objects with a noncontact force. Employed in a wide range of nano and micro-scale operations, OTs have become particularly useful in the manipulation of biological objects including human cells.

A new review published in EPJ Plus conveys the latest achievements in OTs over recent decades. The review is authored by researchers from the College of Information Science and Engineering, Northeastern University, Shenyang, China — Sheng Hu, Jun-yan Ye, Yong Zhao and Cheng-Liang Zhu .


EPJ E Topical Issue on Thermal Non-Equilibrium Phenomena in Fluid Mixtures

When a temperature difference, or gradient, is applied over a bulk fluid mixture at equilibrium, the phenomenon known as thermodiffusion, or the Ludwig-Soret effect, may occur. The thermal force will in general cause the components in the mixture to migrate until the thermal force is balanced by concentration gradients. If the thermal force is applied to a colloidal suspension, the colloids drift towards cold or hot regions. This phenomenon is commonly referred to as thermophoresis. If the fluid is soaked in a porous medium, an additional effect known as thermos-osmosis may occur. Thermo-osmosis leads to a pressure difference. These effects are different from normal diffusion and osmosis, where a concentration difference is the driving force.


EPJ Quantum Technology: New Review Article The Deep Space Quantum Link (DSQL)

A new review lays out a roadmap for quantum technologies. Credit: Robert Lea

Space-based quantum optical links support future networking applications for quantum sensing, quantum communications, and quantum information science. In addition, such links enable new scientific experiments impossible to reach in terrestrial experiments. The Deep Space Quantum Link (DSQL) is a spacecraft mission concept that aims to use extremely long-baseline quantum optical links to test fundamental quantum physics in novel special and general relativistic regimes.

In a new Review article just published in EPJ Quantum Technology, an international author team provide an overview of a two-year long study of how quantum optics in space could be used to conduct new tests of fundamental physics, in compliment to proposed tests utilizing matter or clocks. The manuscript describes the findings of the NASA-funded study, and describes some of the technology requirements and outstanding mission design studies necessary to move forward with the mission.


David Blaschke, Thomas Duguet and Maria Jose Garcia Borge
We are grateful to the referees for their very detailed review of our manuscript and for the important remarks and corrections. The referees are very nice experts of the subject of the paper. The manuscript has been revised with our pleasure. Thank you very much for the choice of the referees who were high level experts and kind scientists.

Avazbek Nasirov, Joint Institute for Nuclear Research, Moscow Region, Russian Federation

ISSN (Electronic Edition): 1434-601X

© Società Italiana di Fisica and